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Chapter 1

Introductory Concepts and Overview

This chapter introduces a good deal of C at a level that should enable you to read
and write simple programs. It moves very quickly to give a broad overview of the

• C language,
• some preprocessor facilities and
• some functions from the standard libraries.

We also show how to run programs.

1.1  Introduction
It is important to learn the form of a language. In this book, we help you to learn C
idiom as well. This chapter illustrates the language as it is used by experienced C
programmers. By this, we mean, not just the language, C, but also its
preprocessor’s facilities and the valuable collection of functions available in the
standard libraries. Virtually all C programs use the preprocessor and functions
from the standard libraries. We use example programs to introduce all of these
aspects and as each important issue arises, we indicate where you can find the
complete treatment in the book.

1.2  A Simple Input/Output Program
We characterise simple interactive input and output with a tiny program that
converts a temperature from fahrenheit to centigrade. Here is a sample session with
this program.
Please enter a fahrenheit temperature 67
67 fahrenheit is 19 centigrade
Now study the program that produces it.
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/∗
∗∗ converts a temperature from
∗∗ fahrenheit to centigrade
∗/

main()
{

int ftemp; /∗ the fahrenheit temperature ∗/

printf(" \nPlease enter a fahrenheit temperature " );
scanf(" %d" , &ftemp);
printf(" \n%d fahrenheit is %d centigrade \n" ,

ftemp, (ftemp − 32) ∗ 5 / 9);
}

Program structure
Essentially, this program has the following structure.

main()
{

declarations

statements
}

Our notation uses an ordinary typeface for characters that must appear exactly as
shown (terminal symbols) and italics to describe what should appear (non-terminal
symbols). So, the main() and the curly braces must appear exactly as shown.
Inside the curly braces, you must have first the declarations and then the statements
that constitute main.

A C program is a collection of functions. One must be called main and this
runs first. Note that the line

main()
does not have a semicolon at the end of it. (Pascal programmers beware!)

The curly braces and the declarations and statements that they enclose are
called a block. You can see that we have indented all the code within the block
from the enclosing curly braces. This is a matter of style: the compiler is blind to
it. We have found that programs are easier to develop and maintain when you can
readily see which curly braces match.

Declarations
C requires that you declare all variables and that declarations appear at the
beginning of the block. In the program above, the declaration has the form

int identifier;
Note that int is a keyword or reserved word and you may not use one as an
identifier. (A full list of keywords and details of allowable identifiers are in chapter
3.)
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Output using printf
The first action of this program is to call the standard function, printf to print the
prompt.
Please enter a fahrenheit temperature

Although printf is not part of the language C, it is supplied with the standard library
that comes with C in a Unix environment (and is usually provided with other C
compilers). In this case, printf has a string argument that specifies what is to be
printed. Note that newline is indicated by \n.

If you look at the other call to printf later in the program, you can see a more
sophisticated use of the function. In general, printf must have at least one
argument , which is a string that describes the format of the output. Observe that
strings are enclosed in double quotes. When the value of an integer variable is to
be printed, its position in the output is indicated by a %d in the format string. In
the second printf, the output starts with a new line then a decimal integer followed
by the string, "fahrenheit is". Next comes the format specification for another
decimal integer, followed by "centigrade" and a new line. Although printf has
quite powerful formatting facilities, only the simpler and more common ones are
introduced in this chapter. (The complete treatment is in chapter 7 where we
discuss the standard libraries.)

After the format string, printf takes a sequence of arguments. These are the
expressions whose values are to be printed. So this program, prints ftemp and then
the value of the expression that converts a fahrenheit temperature to centigrade.

Input using scanf
To do input, we have used another standard function scanf. As you can see, the
form of the scanf is quite similar to that of the printf, with a string that describes
the form of the input followed by a list of variables to be used. However, there is
one important difference in the variable list here. In the printf function, we could
simply list the name of each variable we wanted printed. For scanf, we must use a
call in the form

scanf(" %d" , &ftemp);
where the ampersand, &, is essential (because all C arguments are call by value).
Functions like scanf, that return a value (in this case the number that was entered
by the user of the program) need the address of the location in which the function
can leave a new value. C programs make heavy use of the address-of operator, &,
for this purpose.

So, in our example, it is the address of the variable ftemp that is passed to
scanf which reads a decimal number from the input and stores it in ftemp. Of
course, the argument itself (the address of the variable ftemp) is not altered by
scanf.

Comments
Comments can appear almost anywhere in a program and they are delimited by /∗
and ∗/. They may span several lines. You can probably deduce the few places in
which you cannot put a comment. For example, if you tried to put a comment in
the string argument to printf, it would become part of the string that was printed.
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Nor can you have a comment in the middle of a keyword or identifier. The general
form of a comment is

/∗ anything you like ∗/
You should note that once the compiler detects the beginning of a comment it scans
over anything other than ∗/ and so, if you accidentally forget to close a comment,
the C compiler ignores all the program text to the end of the next comment.

Our programs follow a consistent style where comment blocks start with /∗
and end in ∗/ aligned with ∗∗ in between to make a continuous line. This makes
comments stand out and it is easier to see that they are properly terminated.

Exercise
In the program we just studied, the temperatures had to be provided as integers.
Given that the floating point number type is float, work out how to change the
program to deal with non-integral temperatures and print the results accurate to 3
decimal places. Note that you will need the description of printf and scanf on
pages 000 and 000 in chapter 7 to work out how to adjust the formats.

Answer

/∗
∗∗ converts a temperature from
∗∗ fahrenheit to centigrade
∗/

main()
{

float ftemp; /∗ the fahrenheit temperature ∗/

printf(" \nPlease enter a fahrenheit temperature " );
scanf(" %f" , &ftemp);
printf(" \n%.3f fahrenheit is %.3f centigrade \n" ,

ftemp, (ftemp − 32) ∗ 5 / 9);
}
We have mixed integer and floating point type numbers in the temperature
conversion expression. This works because C automatically converts the ints to
floats.

1.3  Running a C Program
We now work through a short terminal session that runs a very simple C program.
We assume that you know enough about Unix to log on and use the editor to create
a file. (Otherwise, you are advised to see one of the Unix books listed in the
Annotated Bibliography.)

First you create a file containing the program text. This source file’s name
must have the suffix .c. Suppose that the temperature conversion program, of the
preceding section, were in a file called fahr_to_cent.c. Now study the annotated
sequence of Unix commands that compiles and runs the program. (We show the
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Unix prompt as a dollar sign.)
$ ls
fahr_to_cent.c

Compile the program, with the compiled form (called the executable binary) going
to fahr_to_cent.

$ cc fahr_to_cent.c −o fahr_to_cent
and see the program source and binary.

$ ls
fahr_to_cent
fahr_to_cent.c

Run the program.
$ fahr_to_cent
Please enter a fahrenheit temperature 67
67 fahrenheit is 19 centigrade
$

Note that we have used the cc command with the −o flag. Had we omitted it, the
object version of the program would have been put in a file called a.out. It is good
to make a habit of using the −o flag so that you can give meaningful names to
object files.

In general, you can run a small program thus.
• Create a program text in a file whose name has the suffix .c.
• Compile the program using the command cc.
• Run the program by typing the name of the object file produced by the

compiler. (The default name is a.out.)
A typical sequence of UNIX commands for compiling and running a program in a
file called whatever.c is as follows.

cc whatever.c −o whatever
whatever

Exercise
Type and run the last program. By introducing some errors and seeing their effect,
you can become familiar with your compiler’s diagnostics and other effects of
simple errors. Here are some errors you might try:

• place the program in a file that does not have the .c suffix
• try main();
• omit some of the semicolons
• omit the closing brace
• omit the & on the scanf argument

Comments on exercises
We have tried these errors (and many other unintended ones) on a range of systems
and compilers. There is considerable variety in the diagnostics we have seen. For
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example, some systems respond to the first problem, a file without the .c suffix,
with this rather mysterious message.
ld:filename: bad magic number
(To understand this, you need to read about the process involved in compiling a
program on page 000: the bizarre message actually comes from the loader because
the C compiler treats files with the wrong suffix as library files and passes them
directly to the loader, which finds that the file is not in the right format.)

The quality of error messages that syntax errors generate is pretty dependant
on your particular compiler. Most likely, you will find that error messages are not
particularly explicit. (The contrast with most Pascal compilers is striking.)
Commonly, you get the message, syntax error, with a line number that is usually
close to, but after the error. Some of the errors that we suggested you try can
produce a vast output of parasitic messages, which is why we recommended that
you try them under controlled conditions on your machine.

Of course, the last error we suggested, omission of the ampersand when using
scanf should pass the compiler without comment. When you run the program, it
will read the data into some arbitrary part of memory.

1.4  Control flow and Data structures
The program that we study in this section illustrates C idiom and several important
concepts. It reads English text and finds the most frequent letter. Frequencies are
calculated without regard to whether the letters are upper or lower case. So given
some text like

In considering any new subject, there is frequently a tendency,
first, to overrate what we find to be already interesting or
remarkable; and, secondly, by a sort of natural reaction, to
undervalue the true state of the case, when we do discover
that our notions have surpassed those that were really
tenable. [A. Lovelace page 44, Notes on the Manabrea’s
Sketch, Babbage’s Calculating Engines, Spon 1889]

it produces the output
most frequent letter was e
The outline of a program for this task is

while the next character is not an end of file
{

if it is an upper case letter
increment that letter count

else if it is a lower case letter
increment that letter count

}
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for each letter count
if that letter count exceeds the largest so far

update the largest so far

print the most frequent letter
Although the program uses a number of features of C that are probably unfamiliar
to you, try to read it. We discuss it in the rest of this section.
/∗
∗∗ Reads the text on input and prints the
∗∗ most frequent letter,
∗∗ (On ties, first letter is printed)
∗/

#include <stdio.h> /∗ needed for EOF ∗/
#include <ctype.h> /∗ needed for isupper and islower ∗/

int freq[26] = {0}; /∗ letter frequencies ∗/
int commonest = 0; /∗ position of commonest so far ∗/
int ch; /∗ current character ∗/
int j;
main()
{

/∗
∗∗ Calculate the frequency of each letter
∗/
while ((ch = getchar()) != EOF)
{

if (isupper(ch))
freq[ch − ’ A’ ]++;

else if (islower(ch))
freq[ch −’ a’ ]++;

}

/∗
∗∗ Find the largest of the letter counts
∗/
for (j = 1; j < 26; j++)

if (freq[j] > freq[commonest])
commonest = j;

printf(" most frequent letter was %c \n" ,
commonest + ’ a’ );

}

Preprocessor commands
The first new feature appears in the lines that start with #include. These cause text
from the files called stdio.h and ctype.h to be included at this point in our
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program. Strictly speaking, these lines are not part of the C language; they are for
the preprocessor which is invoked automatically when you compile a C program.
Note that the preprocessor lines do not have a semicolon: by contrast, C statements
are terminated with one.

In general, the #include command takes the text in the named file and
includes it at that point in the program. We need the standard I/O library file,
stdio.h, because the program refers to EOF, which is the standard symbol used to
represent the end of file value and EOF is defined in stdio.h. Similarly, the library
file ctype.h has the definitions for isupper and islower.

Declarations and initialisations
The program block starts with several declarations including one for a twenty-six
element array that keeps the number of occurrences of each letter. All the data in
this program is an integer type, int. Observe that the declarations also initialise
freq and commonest to zero. There is actually quite a bit to learn about
initialisations. For example, in the array initialisation, we have actually set only the
first element to zero. By default, the remainder is initialised to zero. We have a
good deal more to say about initialisations in chapters 4 and 5.

You can see that the variable ch is used to hold a character. C has a character
type, char that should be used for character data. However, in this instance we
need to declare ch as int because the standard I/O library function getchar returns
an int value. It needs to do this as it must be able to return any character and a
special additional value for end of file. You will note that when we want to print a
character, the printf format string has %c so that the printf function will correctly
interpret that int data as a character. In addition to the type int, C has floating point
number types, pointers and several variants on ints.

Until chapter 5, the only data structure we use is the array, as in the program
above. Chapter 5 covers more unusual uses of arrays, strings and structures which
permit data structures with different types of data. (They are like the Pascal
record.)

An important characteristic of C programs is that counting generally starts at
zero. So the elements of the array freq have indices 0 to 25.

Our style puts each declaration on a separate line. We could have replaced the
four lines of declarations by the following single line.

int freq[26] = {0}, ch, commonest = 0, j;
Our style makes individual declarations easier to see and to annotate with
comments. It also proves more convenient to modify programs when additional
declarations are needed or existing ones become redundant.

Control structures
Now let us move our attention to the control flow. The outer loop gets a character
from input, assigns it to the variable ch and keeps doing this as long as the
character read is not the end of file character. Let us look more closely at this loop
as it has a number of important features. The assignment expression

ch = getchar()
uses the standard function getchar to read the next character on input. This value
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is assigned to ch and the whole expression has the value of that character. Since
this expression has a value, we can conveniently use it in the loop control by
checking it against EOF. From the outset, you need to appreciate that expressions
are fundamental building blocks in C. The most important consequence of this is
that expressions, like the assignment expression above, have values which can be
used. It is widespread C idiom to use the value of assignment expressions like this.
So, the while loop is controlled by the expression

(ch = getchar()) != EOF

which checks the character read is not an end of file. The inequality test operator is
!= (and the equality test operator is ==).

We can convert an assignment expression into an assignment statement by
putting a semicolon after it as we have done in a later line of the program.

commonest = j;
In this case we want the effect of the assignment expression. We make no use of
the value of this assignment expression.

Note that the semicolon is a statement terminator . So you must put one at the
end of every statement. (In Pascal, semicolons are separators: beware of omitting
them in C!) Also, as we have said, preprocessor commands do not have a
semicolon at the end of the line.

Now consider the details of the block controlled by the while loop. The first
test

if (isupper(ch))
uses definitions from the standard library file ctype.h which has many useful
character tests. In general, these provide code that is more efficient and clearer than
the equivalent you would be likely to produce. So you should use them.

We could have written the upper case test test using
if ((ch >= ’ A’ ) && (ch <= ’ Z’ ))

which compares ch against A and Z. Note that right quotes enclose character
constants. The logical AND operator is && (the OR operator is | | ). You may
think that there are rather a lot of parentheses: one set is required by the syntax of
the if statement and the other explicitly defines the order of evaluation within the
expression. As it happens, >= and <= have higher precedence than && and the
parentheses are not necessary: however, we recommend them for clarity. We have
more to say on this when we deal with operator precedence in chapter 3.

When the program encounters an upper case letter, it performs the increment
statement

freq[ch − ’ A’ ]++;
which is equivalent to, but shorter and clearer than the following.

freq[ch − ’ A’ ] = freq[ch − ’ A’ ] + 1;
As you will see in chapter 3, C is quite rich in operators. The increment operator
++ is very heavily used in a variety of ways.

We have used code like
ch − ’ A’
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which does arithmetic on characters. This is convenient and enables a conversion
between the character read and the appropriate index into the array freq. The fact
that the array indices start at zero makes this code tidy.

This code also assumes that the alphabetic characters are contiguous, as is the
case with the ASCII character set. Since all Unix systems are based on the ASCII
character set, it is the norm for C programmers to write code like this. (Pascal
programmers will have been drilled to avoid such ASCII dependency; such care is
justified if you do need to run programs on non-ASCII systems but it seems that the
majority of C programmers do not regard this as worth the inconvenience.)

This program finds the highest value in freq with a for loop. Its control line
has three components:

• an initialisation expression;
• an expression whose value controls the loop termination and
• thirdly, an expression that is executed after the completion of each loop

repetition.
This makes C’s for loop both powerful and simple. There is no magic incrementing
of a counter variable; the program execution is all written explicitly. The syntax of
the for ensures that all the loop initialisation and control appear at the beginning of
the loop.

Exercises

1. Rewrite the for loop at the end of the program as an equivalent while loop.
2. You will recall that our initialisation of freq actually set only the first

element to zero. When the list of initialisation values for an array has fewer
elements than the array, the remaining element are set to zero. This is useless
where you need to initialise a large array to values other than zero. An
explicit and complete initialisation is clearer. Write a loop that sets each
element of freq to zero.

3. This and the next exercise give you some practice with the concept of an
assignment expression. What does the following code segment do?

if (getchar() == zot)
doA();

else
doB();

4. The following is a rather ugly piece of code. What does it do?
for (j = −1; (j = j + 1) < 26; )

freq[j] = 0;
5. What does the following code segment do?

for (j = −1; (++j) < 26; )
freq[j] = 0;

6. The ctype library provides an isalpha. Look at page 000 in chapter 7 to see
how to use it. Then alter the program to use it with isupper (and avoid using
islower).
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7. We have used getchar to read characters in the program above. The
corresponding function for printing a character ch is putchar(ch). Write a
program that copies input to output, using getchar and putchar.

Answers

1.
j = 1;
while (j < 26)
{

if (freq[j] > freq[commonest])
commonest = j;

j++;
}

2.
for (j = 0; j < 26; j++)

freq[j] = 0;
3. The next character is read from standard input and if it has the same value as

zot, the function doA is invoked. Otherwise doB. Note that the character
read is not stored; it is only used to control the if statement.

4. This sets the 26 element array freq to zero. But it is not as clear as the code
we gave for the second exercise. Not only does it need to set j to −1, but it
combines the loop increment and the loop termination test. We have
included it to highlight the fact that the test for loop termination is done at the
beginning of each loop iteration.

5. This code has exactly the same effect as that in the last exercise. With the
increment operator ++ before the variable name, j is incremented and this
value is compared against 26. As we have already noted ++ is used in a
range of ways.

6. One of the possible answers is to replace loop contents by
if (isalpha(ch))

if (isupper(ch))
freq[ch − ’ A’ ]++;

else
freq[ch − ’ a’ ]++;

7. See chapter 7 and look at some of the other ways to copy a file, on page 000.

1.5  A program composed of several functions
The program we treat in this section demonstrates how to write functions other than
main. It also illustrates a good deal about strings and characters and introduces
scope and some additional control structures.

Our program detects nested comments in C programs. Because comments are
delimited by /∗ and ∗/, the careless omission of a closing ∗/ can turn what you had
intended to be code into a comment. (Pascal has the same problem.) If you are a
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paranoid programmer you might make regular use of a nested comment detector.
Our approach is to report any occurrence of /∗ within a comment. To do this,

our program reads a C program, one character at a time from input. It must be able
to determine when the character just read is within a comment and to do this it
needs to determine when it is in a string (since a /∗ or ∗/ within a string does not
delimit a comment). In addition, the program keeps track of the current line
number so that it can report the location of errors.

In keeping with the philosophy of Unix, we write this program so that it does
one simple task and does not duplicate actions performed by other programs. So,
we assume that the comment checker is to be used in conjunction with the compiler
and it checks programs that the compiler passed without any error messages. This
saves us checking for a multitude of error conditions, like an unexpected end of file
or newline.

The main function
First, let us study the main function. It starts with a #include which we saw in the
last section’s program. Next is another preprocessor command, #define which
defines the symbolic constants , TRUE and FALSE. (These are similar to Pascal’s
constant definitions, except that #define permits you to define symbols that
represent constant expressions as well as simple constant values.) In general,
various symbolic constants like this can be used to make the purpose of your code
clearer. The convention is that defined symbols are given uppercase names. In
general, C treats a zero as false and a non-zero as true but we prefer to define
symbols that make the meaning of our code clearer.

Now consider the overall structure of main. The while statement is very
similar to that in the frequency program of the last section. It reads one character
per loop iteration and terminates on finding EOF. The nextchar function is like the
standard library function, getchar, except that it updates the line counter as well as
reading a character. Within this loop is an if statement that recognises the
beginning of a comment and invokes the comment function to skip through the
program to the end of the comment. On the basis of the character read by
nextchar, the switch statement handles the three cases: a string, a comment or a
slash.

Consider the switch statement. When the character just read is a double
quote, the string function is invoked to scan to the end of the string. The next case
is a single quote which marks the beginning of a character and is handled by the
character function. The last case is that of a slash. This might indicate the
beginning of a comment. But it might equally well be the division operator in an
arithmetic expression and so the program sets gotslash to TRUE so that if the next
character read is ∗, the start of a comment can be recognised. If the character read
does not match any of these, the switch statement has no effect. (This is much
more convenient than Pascal’s case statement which requires that you explicitly
cover each possible case.)

Next, look at the if statement. Now, a comment start is recognised when the
second last character read was a slash (indicated by gotslash having the value
TRUE) and the character just read is an asterisk. When this happens, we invoke
comment and then the continue statement moves control to the next repetition of
the nearest enclosing loop; in this case the while statement.
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/∗
∗∗ comment − check for nested comments
∗/
#include <stdio.h>
#define FALSE 0
#define TRUE 1

int lineno = 1;

main()
{

int gotslash = FALSE;
int ch;

while ((ch = nextchar()) != EOF)
{

if ((gotslash == TRUE) && (ch == ’ ∗’ ))
{

comment();
continue;

}
gotslash = FALSE;

/∗ At this point, not in a comment,
∗∗ string or character
∗/
switch (ch)
{
case ’ " ’ : string(); break;
case ’ \’ ’ : character(); break;
case ’ /’ : gotslash = TRUE; break;
}

}
}
Another jump statement is the break which we have used in the switch. Normally,
execution in a switch statement falls through from one case to the next. (Pascal
programmers take note!) So, you usually need a break at the end of the code for
each case in a switch. In addition to break and continue, C has a goto which
you need to use if you want to escape beyond the nearest enclosing loop. This use
of the break might seem counter-intuitive. After all, we saw that the continue
inside our if statement caused a jump to the next repetition of the nearest enclosing
loop . Indeed, a continue always goes to the nearest enclosing loop, but the break
has two uses: in a switch, it just escapes the switch but in all other situations, it too
escapes the nearest enclosing loop.

The comment and string handling functions
Now let us consider the other functions in this program, starting with a similar pair:
comment, that skips through comments searching for a ∗/, that defines the end of a
comment, or a /∗, that marks the beginning of a nested comment; and string, which
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scans through a string until the closing double quote. These functions are based on
the fact that once in a string, you continue to be in a string until you encounter a
double quote character and you cannot have a comment within a string. Similarly,
once in a comment only a ∗/ gets you out. The overall form of comment is an
infinite loop that is created by a for loop with no terminating condition. Within that
loop is a switch that gets a character and uses its value to determine the action to
perform. Note that we do not need a variable to keep the value of the character
read. The first case deals with the problem the program addresses, nested
comments, and the other case detects the end of a comment and then uses the
return statement to escape the function, back to the calling function. (In this case
main.)
void
comment()
{

for (;;)
{

switch (nextchar())
{
case ’ /’ : if (nextchar() == ’ ∗’ )

printf(" nested comment at line %d \n" , lineno);
break;

case ’ ∗’ : if (nextchar() == ’ /’ )
return;

break;
}

}
}
Note the syntax of this function. It is the similar to that of main. In writing your
own functions, you start with a header that gives the function type and name and
then comes the block. As we mentioned earlier, a C program is a collection of
functions of which main is just the one that is executed first. We have declared the
comment function to be of type void. This indicates that it does not return any
value. We must admit that this is not yet widespread practice amongst C
programmers, but it should be because it ensures consistency in the function’s use
and its definition. (Note that we have put the word void on a separate line; this
ensures that the function name is at the beginning of the line and we do this because
it proves useful when you want to use an editor to find a function definition.) The
many other issues relating to functions are covered in chapter 4.

The only data used in this function is lineno which maintains the number of
the current line. It was declared outside the main function. As you can see we
were able to use it in the main function and it is also accessible to the other
functions in the program. So, its scope is global . Variables that are declared
within the braces of the function block are local to that function and can be
accessed only in the block of their declaration. Procedures cannot be nested (as in
Pascal). So the data within a file can be global, local to a function or local to a
block within a function.

Now consider the string function which is very similar to the last. The only
case that needs discussion is the handling of the backslash, which precedes special
characters. Since C uses the backslash as an escape character, you can put a double
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quote within a string as in the following example.
printf(" an example with \" − a double quote" );

To interpret this properly, our program has to skip over the character after a
backslash when it scans through a string.
void
string()
{

for (;;)
{

switch (nextchar())
{
case ’ " ’ : return;
case ’ \ \’ : nextchar(); break;
}

}
}

The character handling function
The character function below should skip over a C character constant. Simple
characters just have the form

’character’
but we have already seen some more complicated cases, like the newline character
\n. These special characters have a backslash followed by another character. (We
shall see in chapter 3 that there are yet other forms of character constants that this
version of character does not handle.)
void
character()
{

if (nextchar() == ’ \ \’ )
nextchar();

nextchar();
}

The function that gets input
Finally, we need the function nextchar which reads a character and increments the
line counter.
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int
nextchar()
{

int c;

if ((c = getchar()) == ’ \n’ )
lineno++;

return c;
}
We use this function wherever a character has to be read because we want to ensure
that the line counter is incremented in just one place in the code. We define
nextchar as int, the same type as getchar. (Recall that we need to be able to
return a value for EOF as well as any of the characters.) This function also
illustrates how you can return a value for a function, using the return statement
with an argument. In general, the form is

return [expression];
where the value of the function is that of the expression. (The square brackets
indicate that the expression is optional.)

You will notice that our program is composed of several, very small functions.
This is typical in C. As you will see in chapter 4, it is usual for substantial
programs to be organised in several files, with each file holding a set of related
functions. This contrasts with Pascal’s idiom which makes for one large program.

Exercises

1. A return in a function returns control to the calling program. What would
you expect a return in main to do?

2. You have seen how to use #define to establish a constant value. Now the
only reason that we used the preprocessor’s #include facility was to define
EOF. Given that getchar returns the value −1 when it encounters an end of
file, modify the program to avoid the #include and consider the merits of
this approach.

3. We have written the comment function with a for statement that has no
termination condition in the control line. We have also used a switch
statement even though there are only two cases. Try rewriting comment
using a while and if.

4. If you were actually developing a program like this you might well want
some intermediate or debug output. How would you get the characters
echoed as they are read?

Answers

1. A return within the function main terminates the whole program (unless
main is recursive).

2. You can replace the #include line with
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#define EOF −1
and the program will behave as before. Because this creates a constant EOF
with the value that corresponds to an end of file (−1 as it happens), we could
simply use −1 in the test for end of file. But that would be less meaningful
than the defined symbol, EOF. There is scarcely anyone who really wants to
know that end of file is represented by −1.

Nor are you in a position to change the value of EOF. So it makes no
sense to make your own private definitions of it. It is best to use stdio.h to
get all the definitions that experienced C programmers have come to know
and love.

3. One solution below uses the logical negate operator, !.
comment()
{

int lastch, ch;

lastch = nextchar();
ch = nextchar();
while (!((lastch == ’ ∗’ ) && (ch == ’ /’ )))
{

if ((lastch == ’ /’ ) && (ch == ’ ∗’ ))
printf(" nexted comment at line %d \n" , lineno);

lastch = ch;
ch = nextchar();

}
}
Note that we need extra variables and the loop construct is messier. The do
while loop (see chapter 2) gives a somewhat better solution. The form in the
main text has the advantage of clarity and easier modification if we need to
test for other characters.

4. You can print debug output in several ways.
• Echo the characters as they are read by replacing the getchar in the

nextchar function by
putchar(getchar())

• Simply add a printf statement in nextchar to print the characters as they
are read.

• Better still, use a printf statement in nextchar and use the preprocessor
facility of conditional compilation (described in chapter 6) to control its
execution.

1.6  Running single file programs
We have already seen how to run a tiny program. Typically, programs have many
functions split across several files. Each file can then be compiled separately as the
functions within it are developed. For the moment, we just deal with issues that are
relevant for programs that are in a single file. (Chapter 4 treats multi-file programs
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and chapter 8 demonstrates how to use program development tools.)

1.6.1  Checking for potential problems - lint
First let us consider the UNIX utility, lint. Its action is analogous to what you
might do when you try to take all the little bits of lint off a garment which is
otherwise clean. You may think of a program as syntactically ‘clean’ if the
compiler accepts it without complaints and produces an a.out file. Of course, a
syntactically correct program may still have errors and lint finds code that looks
suspicious. We ran lint on the nested comment detector program with this
command.

lint comment.c
And it produced two messages.

printf returns value which is always ignored
nextchar returns value which is sometimes ignored

The first line tells us that printf returns a value and we have not used it. (The value
that printf returns indicates whether it completed successfully or not.) The second
message points out that nextchar returns a value and we sometimes use it and in
other places, we ignore it. In a language like Pascal, such things are detected by the
compiler and this is true of many of the problems that lint detects. There are two
reasons for the difference. Firstly the Pascal language definition forbids several
potentially dangerous practices that C permits. Secondly, there are some errors that
cannot be identified by the compiler: for example, you can compile parts of C
programs separately and so the compiler cannot find incompatibilities between
code in a file it is compiling and the code in other files. We have introduced lint
here because we think that you should develop the habit of using lint always.
However, we will not treat it thoroughly until chapter 4, after we have covered the
various aspects of functions and scope that are critical to an appreciation of the
range of lint’s facilities.

Return now to the message that our use of printf generated. There are three
possible reactions. First, you could simply ignore the lint error message. But if you
are developing a substantial program and you want it to be of high quality, you
would want your program to be quite lint-free. To do otherwise invites the risk of
accidentally ignoring significant error warnings. The second approach would be to
check the value that printf returns. In many applications, this may not be necessary
as printf failure is unlikely and obvious. Our last option is to ignore the returned
value but to make this explicit by casting it to void with a line of this form.

(void)printf( ... );
We can use the same approach in the cases where we do not use the result returned
by nextchar. We have more to say about such type casts in chapters 3 and 4.

1.6.2  What happens when you run a C Program
If you are to interpret all the diagnostics that you might get, you need to understand
what the cc command does. The diagram below illustrates the process that takes a
C source program in a file called prog.c, passes it through the preprocessor, the
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compiler, the assembler and, finally, the loader.
cc prog.c

prog.c

preprocessor
C compiler

prog.s

assembler

prog.o

loader

a.out

As you can see, there are two intermediate files, prog.s and prog.o. If all goes
well, these are temporary and they disappear by the end of the compilation leaving
only a.out (and prog.c).

The first phase in compiling a program is the preprocessor’s pass over the file.
You will rarely get error messages from the preprocessor. When you do make
mistakes in preprocessor commands, their effect is usually to produce code with
errors that are detected by the compiler.

The preprocessor hands the program over to the compiler, which itself may
involve several passes. We have shown the preprocessor and the compiler in one
box because one thinks of these as being very closely coupled. The bulk of error
messages come from the compiler as it attempts to parse a program and produce an
assembly language version. If you really want or need to see this version, use

cc −S prog.c
and the assembly program will be available in prog.s.

In the next stage, the assembler (which is called as) translates the assembly
code form of the program into a relocatable binary in prog.o. There should be no
errors at this stage (since the compiler produced the code). If you want the
intermediate .o files kept, use the −c flag on the cc command. You will see the
uses for this when we discuss multi-file programs in chapter 4.

The loader completes the process, producing the executable binary in a file
called a.out. (Or, if you compile using cc with the −o flag, you can give the binary
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a meaningful name.) It is not unusual to get errors at this stage. One of the most
common occurs when a function or other external symbol is missing from your
program and the loader reports that it cannot find it. (You will see examples of this
when you try the exercises below.)

Exercises

1. The first few of these exercises are to help you learn how to interpret your
compiler’s diagnostic messages. Enter any program and try to compile and
run it with one of the functions missing. (Note that if you decide to type the
nested comment checker, you will need to compile it with the global
declarations first and main last; in chapter 4, we show how to successfully
compile a program with the functions in any order.)

2. Now try putting a semicolon at the end of the #defines.
3. Take any program you have typed and alter it to try to get preprocessor error

messages.
4. Now get some practice with lint.

• See what happens if you change some of the function calls to have more
or less arguments, or arguments of the wrong type. Note that the
compiler can help within a single file but you need lint in other cases.
So try mismatched arguments for functions that are called and defined
within the same file as well as some of the standard functions (which are
obviously not in the same file as their call).

• Try adding a spurious declaration for a variable.
• Now try one of the very common mistakes made by beginning C

programmers, typing = instead of == in one of the if controlling
expressions.

• Also try a loop like this.
for(;;);

Comments on exercises

1. Omission of a function demonstrates an error that is detected by the loader.
2. As you will see in chapter 6, #define does a replacement of the defined

symbol by the string provided in the definition. So when you put a
semicolon at the end of the line, this is included in the places the symbol
appears. You can generate some very mystifying errors by careless typing of
#defines.

3. A command like
#deform EOF −1

produces a genuine preprocessor error message.
4. Different systems set different default lint flags. So, on some systems lint

complains every time you use printf without using the returned value (or
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casting it to void). On others there is no message. We recommend that you
run lint with all flags set.

1.7  Perspectives
Before we go any further, it is valuable to set C in its historical context and discuss
some common complaints about it.

C was developed in the early 1970’s, just a little later than Pascal. Like
Pascal, C reflects ideas that come from Algol60 but from there, the two languages
differ in the way that they developed and the central motivations for their design.

C was created by Dennis Ritchie at Bell Laboratories, growing in parallel with
Unix on a PDP11 minicomputer. It was developed as a systems programming
language and came from a sequence of others, with the typeless languages BCPL
and B as its immediate predecessors. It reflects its history in many ways.

• It has the coherence of a language designed by one person.
• Because Ritchie used C extensively before it came into widespread use, he

was able to refine and develop it into a language that works well in many
applications.

• It is small enough to run on many types of machines.
• It allows the systems programmer to get close to the machine.
• It does not reflect the thinking of the programming schools that are concerned

with program verification.
Now let’s look at some common complaints about C.

Complaint 1: C does not have modern constructs
As the examples of this chapter indicate, C does have control structures that support
structured programming. It offers several selection and iteration control structures
(described fully in chapter 2). It has several built in data types and the user can
define enumerated types, arrays, aggregate data structures and combinations of
these. Although C does not directly support data abstraction, it does have facilities
that enable a programmer to achieve a similar effect. (In this respect, it offers more
than Pascal does.)

Complaint 2: C is a high level assembler
Because C is a powerful language and has been used to write most of the Unix
operating system, it is widely assumed that it must be rather like an assembler.
Many operating systems, especially older ones, are written in assembler. This is
partly due to tradition: on old machines, the high level languages that were
available were usually inadequate for systems programming. Although C gives the
programmer most of the power that an assembly language program permits, it is not
at all like an assembly language. It has elegant control and data structures.

Complaint 3: C does not have I/O
Input and output are not part of the language C. However, there is a collection of
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input and output functions in the standard I/O library. These are available on all
Unix systems and with most other implementations of C. So C certainly does have
I/O: it is simply not defined as part of the language.

The I/O functions are (or can be) written almost exclusively in C and you can
write your own I/O if you wish. This contrasts with Pascal in which I/O must be
part of the language.

Complaint 4: C is not a strongly typed language
This is true: it is not a strongly typed language. (As we have already seen, we can
use int to hold a character and then print it as a character using %c in the printf to
define the type for printing.) Many compilers, especially older ones, are lax about
enforcing all of C syntax and type requirements. They commonly fail to even warn
of such violations.

Complaint 5: C is a dangerous language
This remark is somewhat related to particular implementations. And it is true that
some implementations of C permit some very dangerous practices to pass without
even a warning from the compiler. It may be gratuitous to say that C is not
dangerous but most implementations of it are. However, many of the existing
compilers reflect C’s history and stricter compilers are becoming available.

Even ignoring the issue of particular implementations, C is probably not
appropriate as a language for teaching programming to beginners. The limitations
imposed by a language like Pascal help a beginner. Good C programming does
require that the programmer exert considerable self-discipline. The most
widespread C compilers seem to have been written with the philosophy that
competent programmers should know what they are doing and the compiler should
not get in the way. So, you need to make a practice of using lint and you should
follow the style and practices advised throughout this book.

1.8  Summary of material treated in this chapter

Aspects of the language C

• block structure and functions
• parameter passing mechanism (call by value)
• use of &, address-of operator, to return values from a function
• comments
• scope of identifiers
• data types
• declarations and initialisations for ints
• the array data structure (indexes starting at 0)
• semicolon as statement terminator
• assignment expressions
• equality test operators, == and !=
• increment operator, ++
• logical operators, &&, || and !
• control structures, for, while, if, if else, switch, break, continue and return
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• use of \ as an escape character (as in \" in strings)
• special characters, \n and \t
• the type void for functions

Aspects of the C preprocessor

• #include for file inclusion
• #define for defining constant symbols

Aspects of the C standard libraries

• the I/O functions, printf, scanf, getchar and putchar
• standard symbol, EOF
• standard character tests , isupper, islower and isalpha

Running programs
We saw how to run a program by compiling a file with the suffix .c using the C
compiler, cc, to produce an executable binary (with default name a.out).
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Control Flow

The statements that control the flow of execution are:
• selection constructs: if, if-else and switch
• loops: while, do-while and for
• jump statements: break, continue, return and goto.

As you have already met most of these in chapter 1, the treatment here is terse.
This chapter has detailed coverage of the more difficult aspects that were glossed
over in chapter 1.

2.1  Introduction
C has fairly conventional control flow structures. By default, the program
statements are executed strictly in the sequence that they appear, starting with the
first statement in main, then going to the second, the third ... inexorably through
until the last. This chapter describes the statements that can alter the default
straight line flow of control.

But before we can deal with these control structures, we discuss the statements
and blocks that are controlled and we see how controlling expressions work. The
Pascal programmer will find these rather foreign because C has no built-in boolean
type to control selection structures and loops; it uses integer expressions. As we
saw in chapter 1, we can often get by quite well if we just read the loop control
expressions as if they were booleans. However, this is not always true, and in this
chapter, you will come to grips with control expressions.

2.2  Statements and Block Structure
C is a block structured language in which a statement may be either

• A single statement , which is always terminated by a semicolon or
• a block, which is a sequence of declarations and statements enclosed in curly

braces { }.
Now let us see these in terms of the following code segment that is taken from the
main function of chapter 1’s comment checker program. The while statement
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controls a block containing three statements: an if statement, an assignment and a
switch statement. The if statement controls the execution of two statements: a call
to the comment function and a continue statement. As we noted in chapter 1, the
statements within each block are indented from the line that controls their
execution.

while ((ch = nextchar()) != EOF)
{

if ((gotslash == TRUE) && (ch == ’ ∗’ ))
{

comment();
continue;

}
gotslash = FALSE;

/∗ At this point, not in a comment, string or character ∗/
switch (ch)
{
case ’ " ’ : string(); break;
case ’ \’ ’ : character(); break;
case ’ /’ : gotslash = TRUE; break;
}

}

Exercise
Why doesn’t the following code find the maximum of an arbitrary sequence of
positive numbers terminated by the value of SENTINEL?

#define SENTINEL 0

int j;
int max = 0;

scanf(" %d" , &j);
while (j != SENTINEL)

if (j > max)
max = j;

scanf(" %d" , &j);

Answer
Braces are missing around the if and scanf statements. So the indentation does not
reflect the actual block structure: the second scanf is not part of the loop. (Of
course, this problem applies in Pascal, too.)

2.3  Controlling Expressions
Selection structures and loops use a controlling expression whose value defines
whether the controlled statements are to be executed. So, for example an if has the
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following form.
if (controlling expression)

statement

We can usually read this as follows.
if the controlling expression is true

the statement is executed
As foreshadowed in the introduction to this chapter, the actual situation is not quite
as simple as this because C has no logical or boolean type. So the view that an
expression is true or false is not accurate. In fact, the controlled statements are
executed when the expression gives a non-zero value.

So, a statement like
if (j > max)

max = j;
can be read as follows.

if j is greater than max
assign the value of j to max

But, in strict terms, it would read
if the expression (j > max) has a non−zero value

assign j to max
and we should note that relational expressions like (j > max) have the value zero
when they are false. In general, expressions behave thus:

• expressions evaluating to zero act like false;
• expressions evaluating to non-zero values act as true .

You will recall that in the second programming example of chapter 1 we defined
our own symbols TRUE and FALSE. This enabled us to write code that was slightly
longer but clearer than we could have produced using the fact that zero controlling
expressions act as false.

We have already introduced several logical and relational operators. Before
we launch into the control structures, we summarise them all.

!x not x

x < y x less than y
x > y x greater than y

x <= y x less than or equal to y
x >= y x greater than or equal to y

x == y x equal to y (not the same as the assignment operator =)
x != y x not equal to y

x && y x logical-AND y
x || y x logical-OR y
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The blank lines mark precedence levels, with all operators between a pair of
horizontal lines having the same precedence and the groups of operators with
highest precedence appearing earlier in the table. Of course, you can write
expressions with brackets and then you don’t have to worry about precedence rules.
Indeed, since bracketing is the safest approach, this what we recommend you do.

Exercises

1. Given that x is an int, when is the function called action invoked in these
two if statements.

if (x)
action();

if (x != 0)
action();

2. Given that flagset is an int, explain what the following code fragment
appears to do.

if (flagset)
action();

3. Look back to the comment checking program in chapter 1 and rewrite main
as necessary so that the identifiers TRUE and FALSE are not needed.

Answer

1. In both cases, action is invoked where x is non-zero. Which is better
depends upon the context: the former is better where x plays the role of a
boolean flag and the second form is better where x is used as a number.

2. Presumably, flagset has a non-zero value when a certain condition holds so
we want to call action. Depending upon the particular coding situation, it
may be clearer than the equivalent

if (flagset == TRUE)
where TRUE has been suitably defined as in the comment checker of chapter
1.

3. The if controlling line becomes
if (gotslash && (ch == ’ ∗’ ))

and the assignment,
gotslash = FALSE;

becomes
gotslash = 0;

and the other assignment to gotslash can be written as
gotslash = 1;
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or you can use any other non-zero expression. The original form is much
more obvious but this form is so commonly used by C programmers that you
had best get used to reading it.

2.4  Selection
C has three selection structures. The first two that we treat, if and if-else look very
alike. The third, switch, permits multi-way branches on the basis of constant case
cases. All of these should be straightforward for the Pascal programmer, who will
appreciate the greater power of C’s switch cases which can be any constant
expression.

2.4.1  if
You have already seen several uses of the if statement in this and the last chapter.
Now we discuss its general form. But first consider the following simple if
statement in a code segment which calculates an average by dividing sum by n.
This if statement ensures that the division is only done when n is non-zero.

if (n != 0)
av = sum / n;

When the expression n != 0 is false (actually zero) the statement is skipped. As
you will be aware from the last section, we could have written the code as this
equivalent but less natural form.

if (n)
av = sum / n;

We certainly do not recommend such code and, of course, you will use the clearer
form given first. However, you may well meet poorly written programs that do use
the shorter, more obtuse form.

The general form of the if statement is
if (expression)

statement

where the statement is executed if the expression is non-zero (true).

2.4.2  if-else
This structure selects between two statements as in the following example, which
calculates an average when it can and prints an error message otherwise.

if (n != 0)
av = sum / n;

else
printf(" No data. \n" );
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The general form of the if-else statement is
if (expression)

statement
else

statement

The first statement is done when the expression is non-zero (true) and otherwise,
the second executes.

2.4.3  Dangling else
The if and if-else statements look very alike and this poses a potential ambiguity
which C resolves very simply, by defining else to belong to the closest if above it
in the text. (This is the same ‘dangling else’ problem and solution as in Pascal.)
You need to take care that you write the code that you intend. So an if-else within
an if looks like this.

if (expression-1)
if (expression-2)

statement-A
else

statement-B

but to nest an if within an if-else, you need braces, like this.
if (expression-1)
{

if (expression-2)
statement-A

}
else

statement-B

Exercise
The identation in the following code is misleading. Why? What would you do to
make this code actually work as its indentation and sense suggests it should do?

if (safe)
if (val < TOL)

printf(" Meets tolerance" );
else

printf(" dangerous" );

Answer
The problem is missing braces.
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if (safe)
{

if (val < TOL)
printf(" Meets tolerance" );

}
else

printf(" dangerous" );

2.4.4  switch
This multi-way selection structure is used in the code below to print a character,
digit, with an appropriate ordinal suffix.

switch (digit)
{
case ’ 1’ : printf(" %c−st" , digit); break;
case ’ 2’ : printf(" %c−nd" , digit); break;
case ’ 3’ : printf(" %c−rd" , digit); break;
case ’ 4’ :
case ’ 5’ :
case ’ 6’ :
case ’ 7’ :
case ’ 8’ :
case ’ 9’ :
case ’ 0’ :

printf(" %c−th" , digit); break;
}

When the character in digit is one, the first printf is executed and then the break
transfers control from the switch. Note that without the break, execution would
fall through to the next case. The cases that require "th" as a suffix use this fall
through. Because you can order cases as you wish, using fall through to the next
case is the general mechanism for combining cases that you want to treat alike.
Should digit have a value other than those digits covered by the cases specified, the
whole switch statement is skipped. Unfortunately, ranges such as those in the
above example cannot be abbreviated.

The general form of the switch is as follows.
switch (switch-expression)
{

[declarations]
case constant-expression : statement list

...

[default: statement list]
}

Note that the switch-expression can be any expression that gives a simple non-
floating point type. Observe that you may have declarations at the beginning of the
block controlled by the switch (although, in practice, they are rare). Each case
must be a constant expression which means that its value must be defined at
compile time; it cannot contain any variables or function calls. It can be any,
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arbitrarily complex constant expression that is either integer or one of the types that
can be regarded as mapping onto the integers. (This includes the character and
enumerated types, discussed in chapter 3.) So, following our convention that
constant symbols are given uppercase names, these expressions are permissible
case expressions

case 847 :
case 4 ∗ SPECIAL + OFFSET :

case EOF :
case ’ a’ :

They may be ordered as you choose but each case must be unique.
In general, you need a break after each case to prevent control from falling

through to the next case. You should take care about using fall through as an
intentional programming device other than to get the effect of ranges as in the
example above (where the range of digits that take the same suffix are handled
together). Should you use fall through, take care to document it carefully so that
future modifications will take account of it.

The default case is optional. In its absence, the switch is skipped when the
switch-expression gives a value other than those specified in case expressions.
When it is present, it acts as a catch all and is particularly useful for trapping error
conditions which arise because of a case that should never occur.

As we have already noted, the cases may only involve constant expressions;
where this is inadequate, you need to use a sequence of if-else statements, as we
show in the next section.

Exercises

1. Which of the following are acceptable case constant expressions? Assume
the convention that uppercase is used for #defined constant symbols and
other identifiers are variables.

case 76 :
case num ∗ 2 :
case SVAL ∗ 2 :
case 84.6 :

2. How does the following code segment differ from the example at the
beginning of section 2.4.3 and how can you make its behaviour identical.

switch (digit)
{
case ’ 1’ : printf(" %c−st" , digit); break;
case ’ 2’ : printf(" %c−nd" , digit); break;
case ’ 3’ : printf(" %c−rd" , digit); break;
default: printf(" %c−th" , digit);
}
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Answers

1. All are acceptable except "num * 2" (because num is a variable) and "84.6"
(because case expressions cannot be floating point numbers).

2. Any character other than the digits will also cause ‘th’ to be printed. To
make the code effect identical use

if ((digit >= ’ 0’ ) && (digit <= ’ 9’ ))
switch statement as before

or we can alter the default this:
default: if (’ 0’ <= digit) && (digit <= ’ 9’ ))

printf(" %c−th" , digit);

2.4.5  else-if
Although this is not really a separate structure, it is a common use of nested if-
elses where a multi-way branch requires variable case selector expressions as in
the example below which prints a comment on a grade.

if (grade > 90 )
printf(" excellent" );

else if (grade > 70)
printf(" good" );

else if (grade > 50)
printf(" acceptable" );

else if (grade > 45)
printf(" almost acceptable" );

else
printf(" dreadful" );

Each if test covers a part of the range of values that constitute a particular
assessment. Normal indentation conventions would make each else-if one level
further indented so that the last printf would be four levels deeper than its present
position. However, this else-if form of the if-else is usually indented as above to
reflect the fact that it is really a multi-way branch.

The general form of the else-if multi-way branch is
if (expression-1)

statement
else if (expression-2)

statement
...
else

statement

2.5  Loops
The looping statements are while, do-while and for. The while and do-while
correspond to Pascal’s while and repeat loops but as we have already seen in
chapter 1, the for loop is very much more powerful than Pascal’s.
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As we also saw in chapter 1, it is usual C idiom to make loop control
expressions work hard: in addition to controlling the loop, they commonly have a
side effect such as reading data or incrementing a counter.

2.5.1  while
A simple use of the while loop is shown in the following code segment that reads
and prints a sequence of numbers, stopping at a special sentinel value, STOPPER.

while ((scanf(" %d" , &value) == 1) && (value != STOPPER))
printf(" %d" , value);

This is similar to loops we saw in chapter 1. Each loop iteration reads a number and
compares it to STOPPER. If the number read is the same as STOPPER, the loop
completes. Otherwise, the number is printed and the next iteration follows.

Another code segment that illustrates a common C idiom is shown below. It
skips over white space.

while (isspace(nextch = getchar()))
;

The control line does all of the work, reading a character, assigning it to nextch
and using the standard function isspace to check whether it is a white space
character (this can be any one of space, tab, newline or formfeed). Each loop
iteration reads one character. This continues just as long as the character read is a
white space character. On loop exit, nextch will be the first character that is not
white space. The semicolon, alone and indented, indicates that the null statement is
executed (and no actions are performed aside from those in the loop control
expression).

The general form of the while statement is
while (expression)

statement

The statement is repeatedly executed as long as the expression is true (non-zero). If
the expression is zero initially, the statement is never executed.

Exercise
Rewrite the while loop that reads and writes a sequence of numbers up to the
STOPPER sentinel value, but take the scanf out of the control line.

Answer
Assuming this is part of a function and we want to return upon an error, one answer
is
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if (scanf(" %d" , &value) == 1)
while (value != STOPPER)
{

if (scanf(" %d" , &value) != 1)
return;

printf(" %d" , value);
}

2.5.2  do-while
The following example uses a do-while loop to read and print integers to a sentinel.

do
{

scanf(" %d" , &number);
printf(" %d" , number);

}
while (number != STOPPER);

It differs from the code in the last section in that it prints the sentinel value. The
do-while structure is less commonly used than the while.

Its general form is

do
statement

while (expression);
where the statement is executed at least once before the termination expression is
evaluated and the statement is repeated until the controlling expression is false
(zero).

2.5.3  for
The following code fragment uses a for loop as a simple counting loop that reads
exactly num numbers.

scanf(" %d" , &num);
sum = 0;
for (i = 1; i <= num; i++ )
{

scanf(" %d" , &value);
printf(" %d" , value);

}
This uses i as a loop counter variable. The for-control line sets i to one initially,
tests whether i has exceeded the value of num on each entry to the loop. On each
completion of the loop, i is incremented by the expression, "i++". Should num
have the value zero, the for loop will not be executed at all.

Of course, the for loop is much more powerful than this simple counting loop
might suggest; the for has all the power of a while loop. So we can recast the code
segment that reads a sequence of numbers to a sentinel value like this
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for( ; (scanf(" %d" , &value) == 1) && (value != STOPPER); )
printf(" %d" , value);

which is equivalent to the code that used a while loop to read to a sentinel.
The general form of the for loop is

for (initialisation; continuation-test; loop-increment)
statement

As indicated above, the for loop is controlled by the three expressions that are
separated by semicolons. The first expression sets up initial conditions for the
loop. The second is tested at the beginning of each loop iteration and if it is true
(non-zero), the statement is performed. The final expression is evaluated at the
completion of each loop iteration and is frequently used as an increment as in the
counting loop at the beginning of this section.

As we saw in chapter 1, any, or all of the controlling expressions can be null.
In the case of a null initialisation expression, no initialisation is performed. When
the termination test expression is omitted, the loop is repeated until an escape
statement takes control flow out of the loop, as we saw in the example of chapter 1
(and which we will treat in the next section). The third expression’s omission
means that the null expression is performed on each loop completion.

Exercise
In the code segment above, what is the value of the loop counter after a normal exit
from the loop?

Answer
You control the loop counter so you know it. This is actually a silly question in C.
The value of loop counters on loop exits is only an issue in a language like Pascal
that has magical, self incrementing loop counters.

2.6  Jumps
We have already seen the continue, break and return statements used in chapter
1. So we can deal with them briefly here. The only new jump is the unstructured
goto.

2.6.1  continue
We saw the use of the continue in the main function of the comment checker
program.
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while ((ch = nextchar()) != EOF)
{

if ((gotslash == TRUE) && (ch == ’ ∗’ ))
{

comment();
continue;

}
gotslash = FALSE;

/∗ At this point, not in a comment, string or character ∗/
switch (ch)
{
case ’ " ’ : string(); break;
case ’ \’ ’ : character(); break;
case ’ /’ : gotslash = TRUE; break;
}

}
This continue occurs within an if statement and takes control to the next iteration
of the while loop that reads another character from input.

The general form is
beginning of nearest enclosing loop
{

...
continue;
...

}
end of nearest enclosing loop

and the execution of the continue takes control to the end of the current iteration
of the nearest enclosing loop.

2.6.2  break
As the example above also shows, the break is used to escape the cases of a
switch statement. It can also be used to escape a loop. As we noted in chapter 1, it
is somewhat overloaded; within a switch, it always escapes that switch. Within
other control structures, including the if and if-else, it escapes from the nearest
enclosing loop.

The general form is
beginning of nearest enclosing loop or switch
{

...
break;
...

}
end of nearest enclosing loop or switch

and the break takes control out of the nearest enclosing loop or switch statement.
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2.6.3  return
We saw several uses of the return in chapter 1’s comment checker. In the
comment and string functions, we used return to take control back to main after
we had found the end of a comment or string. We also saw it used in nextchar like
this.
int
nextchar()
{

int c;

if ((c = getchar()) == ’ \n’ )
lineno++;

return c;
}
Note that in this function, we use return both to return control to the calling
function and to return the function value. You can specify the returned value with
any expression. (Many programmers enclose the returned expression in brackets;
since any expression that is enclosed in brackets is also an expression, this is fine,
though unnecessary.)

The general form is
return [expression];

where the return takes control back to the calling function. When the return is in
main, control returns to the process that invoked the program (unless main is
recursive!). Where the function has a type other than void, the return statement
may be followed by an expression whose value is returned. In terms of syntax, the
expression is optional. However, all functions that are not of type void should
return a value of the appropriate type. We will see in chapter 4 that lint can detect
anomalies in the use of return.

2.6.4  goto
Most programs can be written conveniently using the jump statements already
treated. One common class of problem where this is not so arises when you need to
do a multi-level break or continue. Since, the continue jumps to the end of the
nearest enclosing loop, a jump to the next iteration of any other enclosing loop
requires a goto. Similarly, the break escapes from the nearest enclosing switch or
loop. Typical situations are illustrated in the code skeleton below.
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...
for ( ... )
{ ...

while ( ... )
{ ...

if ( ... )
goto exitfor;

...
switch ( ... )
{ ...

case ESCAPE: goto exitwhile;
...

}
...

}
exitwhile:
...

}
exitfor:
...

Note that we have chosen goto label identifiers which emphasise the fact that we
are using the goto to escape the for and while loops. (Pascal programmers note
that the label cannot be a number and that the label is not declared.)

The general form of goto is
goto label-identifier

where the label is any identifier (as defined in chapter 3). The label can be written
before any statement (including a null statement) and its form is

identifier :
The label can be anywhere within the same function. (If you choose to overload the
goto identifier label by defining two labels with the same name, the goto jumps to
the label in the nearest enclosing block. Hopefully, you will never make use of this
‘feature’.)

Exercise
Any for statement can be mapped to an equivalent while statement. We have given
a general form of a for statement. Show how it translates to a while statement.

Answer
A simple translation is like this.
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initialisation;
while (termination-test)
{

statement
next: loop-increment;
}

We have included the label next for the situation where there happens to be a
continue within the for loop. This can be translated into a goto next.

2.7  Summary
C is a block structured language in which a statement may be either

• a single statement which is always terminated by a semicolon or
• a block which is a sequence of declarations and statements enclosed in curly

braces { }.

Controlling expressions with a value
• zero, act as false and
• non-zero, act as true.

Selection structures

• if
• if-else
• switch for multi-way branches, where the branches are selected by constant

expressions. Normally, each branch requires a break to prevent fall through.
One branch may, optionally, be the default branch.

• else-if is multi-way branch with variable selection expressions.

Loops

• while, tests at beginning of loop
• do-while, tests at end of loop; controlled statement is done at least once
• for, tests at beginning of loop; control line has three components

1. initialisation expression
2. loop continuation expression, tests at beginning of loop
3. expression that is evaluated on each loop completion and is generally

used as a loop increment

Jumps

• continue, goes to the next iteration of the nearest enclosing loop
• break, escapes from the nearest enclosing loop or switch
• goto, jumps to the label specified
• return, jumps to the calling function (within main, it quits program, unless

main is recursive)
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Chapter 3

Simple Data Types

This chapter describes the simple types of data that C offers and the operations you
can do on them. As a language that was designed for systems programming, C
makes it possible to get close to the machine. It provides data types that permit you
to deal with bits, bytes, words and machine addresses. The simple types in C are

• the various types of integers, int, short, long, and unsigned.
• the character type, char
• the user specified type (or enumerated) type, enum
• the floating point number types, float and double
• and the pointer types.

We also deal with conversions between types, both
• explicit casts and
• implicit type conversions.

We see that C is very rich in operators.

3.1  Introduction
We describe each C data type in terms of the range of values it can take and the
operations that can be performed. When we discuss each type in C, we deal first
with the range of values that can be represented by the type and this includes a
treatment of the representation of constants in that range. Then we discuss the
operations that are appropriate for that type and some common uses.

In the earlier chapters, we have made simple uses of int and char variables. In
this chapter, we deal with the remainder of the simple data types in C. These are
the types that are used to represent a single data element. Aggregate data types that
are needed for collections of data elements are treated in chapter 5.

C has two fundamental data types, int and double. By this, we mean that
other types are best understood in terms of how they relate to one or other of these
types. We treat the int type in considerable detail first. Then we discuss the types
that map onto the integers. Next we consider the floating point types, which are
based on the fundamental type, double. The last of the simple data types is the
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pointer which is actually a collection of types, one for each possible type to which a
pointer can point. Finally we deal with the somewhat messy subject of type
conversions.

3.2  Identifiers and reserved words
An identifier is a name. You have seen several examples in the preceding chapters.
Identifiers must start with a letter or the underscore, ‘_’. The remainder of the
name may be any sequence of letters or digits or the underscore. Note that upper
and lower case letters are distinct. As in the examples throughout this book, it is
usual practice to use purely upper case for #defined identifiers.

Depending upon your compiler, there may be a limit on the number of
characters that are significant in an identifier. Generally, the first eight characters
are significant. For external identifiers, to be discussed in the next chapter, the
limit may be even smaller. (On some systems only 6 characters are significant for
such identifiers.)

In addition, you cannot define identifiers that are the same as any of C’s
reserved words:

auto extern sizeof
break float static
case for struct
char goto switch
continue if typedef
default int union
do long unsigned
double register void
else return while
enum short

3.3  Declarations
Whenever you want to use data, you must declare it. A declaration associates a
name and a type with some memory. Every C variable must be declared before it is
used. Optionally, data can also be given an initial value in the declaration. Having
defined the type of a piece of data, you should only perform operations on it that
make sense for the type declared. As you may find, the range of C compilers apply
different standards in the strictness with which they limit the use of operators to
operands of suitable types. Older compilers generally reflect a rather laissez-faire
attitude which seems to say ‘C programmers should be assumed to know what they
are doing and if they happen to bend the rules a bit that is fine’ and ‘the compiler is
not supposed to be a straight jacket that prevents programmers from doing what
they need to’. Newer compilers show a trend towards stricter enforcement,
protecting the programmer against accidental errors. We will encourage you to be
disciplined in this matter even if your compiler does not force it upon you. As in
chapter 1, we demonstrate established practice as well as good style.

Declarations appear at the beginning of a block. In the program fragment
below, we illustrate the form of declarations. The first declaration is for an int
variable called windows and this is initialised with a value given by a constant
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expression. The integer variable people is set to zero and the next int, doors, has
not been initialised. The variable wall_area is declared to be real and is initialised
to the value 7.2 and the character variable c is initialised to the character ’M’. We
will leave the thorough treatment of initialisations to chapter 4 because it is affected
by scope.
#define MINWINS ...

int windows = 3 ∗ MINWINS + 1;
int people = 0;
int doors;
float wall_area = 7.2;
char c = ’ M’ ;

As a point of style, note that we have put each declaration on a separate line. This
makes it easy to delete declarations or add them near related variables.

The general form of declarations is
type identifier [ = expression ] [, ...];

where square brackets indicate that initialisation is optional and the [, ...], which is
often called an ellipsis , indicates that you can declare several identifiers of the same
type if you wish.

3.4  Integers
The C type int is one of the fundamental types. This means that much of the
material in this section also applies for the character and enumerated types that map
onto the integers.

Essentially, integers are whole numbers. It makes sense to do arithmetic on
them and to compare the value of one integer with another. C also has bit
operations and several other operators that can be used with integers. The
following treatment may seem quite long and it is detailed. This is partly due to the
number of variants of ints and partly to the large number of operators that apply to
the integers.

3.4.1  Integer values
The range of values that can be represented by an int is machine dependent. It is
defined by the size that is most natural for integers for the machine. So, on a
machine like the PDP11, an int is 16 bits. In the case of machines like the
Motorola-68000, some C compilers implement an int as 16 bits and others as 32
bits. In general, you can rely on an int being at least 16 bits on most machines (and
so an int can generally be used for numbers in the range −32768 to 32767.)

In cases where it is important to save memory space, you can define a short
int. Although the size of a short int is also machine dependent, it is guaranteed to
be no bigger than an int. In some C compilers, short ints are actually the same size
as an ordinary int. However, a variable declared as a short int is always to be
regarded as being of a different type from a variable type of int.

Where the size of an int is insufficient, you may be able to use a long int,
which is guaranteed to be no smaller than an ordinary int. C has an operator,
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sizeof, which gives the number of bytes occupied by an item of a given type.
Using this, we can summarise int sizes for any compiler, on any machine:

sizeof (short int) ≤ sizeof (int) ≤ sizeof (long int)
Below is a table with the size of an int on various machines. We have left room for
you to add values for your system. As you can see, on a machine like the PDP11,
long ints may often be necessary, where on the VAX an ordinary int would suffice.

_________________________________________________
Examples of sizeof integers_________________________________________________

System short int int long int_________________________________________________
DEC-VAX System V 16 32 32_________________________________________________
DEC-PDP11 Version 7 8 16 32_________________________________________________
M68000 Sun 16 32 32_________________________________________________
IBM PC Venix 2.0 8 16 32_________________________________________________
AT&T 3B2 System V 16 32 32_________________________________________________
Your system_________________________________________________

Normally, integers are signed. However, an integer type can be declared to be
unsigned. The most common uses for unsigned integers are for data that is really
to be considered as a bit pattern, as in the case of a mask that can be used with
bitwise operators to select particular bits in a data item. You might also use them
for variables that cannot have negative values and where the extra bit is required as,
for example, in the case of a variable to hold an amount of time in seconds.

Some of the variety of int declarations and forms of int constants are
illustrated in the following:

int thneeds = −4;
unsigned int time = 1;
unsigned short int maskin = 071; /∗ octal 71 ∗/
unsigned long maskout = 0xf9; /∗ hexadecimal F9 ∗/
long mask_1_bit = 1L; /∗ long 1 ∗/
long mask_2_bits = 03; /∗ long octal 3 ∗/

Decimal constants are written as you have seen them already: an optional minus
sign to indicate negative numbers and a sequence of digits where the first (leftmost)
digit is not zero. Octal constants, like maskin above, are distinguished by a
leading zero. Hexadecimal constants start with 0x (or 0X). Any constant that is
written with L or l as a suffix is a long constant. Observe that the initialisation of a
long int does not require the L suffix as illustrated in the last example.

Whenever you qualify an int as unsigned, long or short, you can omit the
keyword int as in the last three declarations above. In fact this is the most common
practice. So the general form of integer declarations is

[qualifier list] [int] [identifier list];
where the qualifiers can be unsigned, and either of short or long and the
identifiers listed may be explicitly initialised, as described in the last section.
Constant values can be written as

[−][0][x or X][sequence of digits][l or L]
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Exercises

1. What is the effect of the following declarations?
i. int n = 0170;

ii. int m = 0810; /* Warning: bad style or an error */
iii. short int i = 0Xab;
iv. long j = 0x172;

2. On a machine like the PDP11 (with a 16 bit int, 8 bit short and 32 bit long)
what is the type of the following constants?

i. 0xFFFFFF
ii. 184000

iii. 8l
iv. 13L
v. 012L

vi. 8

Answers

1. The declarations have the effect described below.
i. The variable n is declared to be of type int and it is given an initial

value of the octal number 170. (Which is 120 in decimal)
ii. Rather like the last case, m is an int which is initialised to an octal

value but the digit ‘8’ is not one of the octal digits. Older compilers
will treat the 8 as octal 10 without any warnings. Here is another use
for lint.

iii. i is a short with initial value hexadecimal ‘ab’ (which is 171 in
decimal)

iv. j is a long also initialized with a hexadecimal value.
2. The type of the constants is:

i. 0xFFFFFF is a hexadecimal long, since a 6-digit hex number requires
24 bits. (Of course, there is no guarantee that long is actually larger
than int on all machines but it usually is so on machines with small
word size, as in the case of the PDP11.)

ii. 184000 is a long because it is too big for an ordinary int.
iii. 8l is a long int.
iv. 13L is a long int because this is specified (and in spite of the fact that

13 would fit into an int.)
v. 012L is a long octal constant (10 in decimal).



-- --

Simple Data Types 45

vi. 8 is an ordinary int constant.

3.4.2  Integer operations
Throughout this section, we use the table on page 000. It lists all the operators that
apply to ints and, in due course, we discuss each of them. The vertical layout of the
table defines precedence groups. The horizontal layout shows related groups of
operators. The last column of the table helps to illustrate the meaning of each
operator. It shows the value of the expression where x has the value 11, y the value
4 and w the value 0.

But before we launch into a study of the vast collection of C operators that can
be used with integer variables and constants, we need to deal with a number of
important preliminaries.

Expression values
First, you should recall the discussion of controlling expressions in chapter 2,
where we noted that C has a more generalised notion of an operator than many
other languages. In particular C views = as an operator. So assignment expressions
have a value that can be used. For example, one can write an expression like

y = 3
and since this is an expression, it must have a value. This particular assignment
expression has the value 3, the same as the right hand side.

Also in the earlier chapters, we saw several relational expressions used to
control loops and selection statements. The program flow depended upon whether
the controlling expression had a zero or non-zero value. So, for example, a loop
might be controlled by an expression like

(x = getchar()) != ’ z’
which has a subexpression

x = getchar()
which has the value that getchar returns. The value of this assignment expression
is compared against ’z’, using the inequality operator !=. When the test fails
(meaning that getchar read a ’z’), the whole expression has the value 0. Otherwise
this expression has a non-zero value.

Order of evaluation in expressions
In general, the way that an expression is evaluated and, hence, its value depends
upon several things. First, the relative precedence of the operators defines which
operations will be done first. So, when you write an expression like

a > b && c <= d
you rely upon the fact that the relational operators > and <= have higher precedence
than && (the logical AND) operator. We could make the meaning of this expression
clearer (for those unfamiliar with C precedence) by using parentheses thus:

(a > b) && (c <= d)
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______________________________________________________________________
Integer Logical or when x=11,
Operators Arithmetic Relational Bitwise Other y=4, w=0______________________________________________________________________

minus −x −11
increment ++x 12

x++ 11
decrement −−x 10

x−− 11
address-of &x ‡

size of sizeof x ‡
complement ∼x ‡

logical negation !x 0______________________________________________________________________
multiply x ∗ y 44

divide x / y 2
modulus x % y 3______________________________________________________________________

add x + y 15
subtract x − y 7______________________________________________________________________
shift left x << y 176

shift right x >> y 0______________________________________________________________________
less x < y 0

less or equal x <= y 0
greater x > y 1

greater or equal x >= y 1______________________________________________________________________
equal x == y 0

not equal x != y 1______________________________________________________________________
and x & y 0______________________________________________________________________

inclusive or x | y 15______________________________________________________________________
exclusive or x ^ y 15______________________________________________________________________

and x && y 1______________________________________________________________________
or x | | y 1______________________________________________________________________

conditional w?x : y 4______________________________________________________________________
assignment x = y 4

x ∗= y 44
x /= y 2
x %= y 3
x += y 15
x −= y 7
x <<= y 176
x >>= y 0
x &= y 0
x |= y 15
x ^=y 15______________________________________________________________________

comma x, y 4______________________________________________________________________
‡ machine dependent
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In the table of integer operations, all operations between horizontal lines have equal
precedence and groups of operators higher in the table have higher precedence. For
example, the operators above the first line are the unary operators: as in
mathematics, unary operators have very high precedence. You may think of them
as being bound very tightly to the operand that is adjacent to them.

Looking now at the operators below the first line, we need to consider the way
that associativity defines the order of evaluation where an expression has operators
with the same precedence. (Associativity is also referred to as the binding .) Two
possible rules can operate: left-to-right or right-to-left associativity. The binary
arithmetic, logical, relational and bitwise operators associate from left-to-right (as
in mathematics) which is why the expression

3 − 2 + 1
has the value 2 (where right-to-left associativity would give the value 0).

The assignment operators associate right-to-left and this turns out to be the
natural interpretation as in a multiple assignment expression like this

a = b = c = 7
which sets all three variables to 7. To do this, the rightmost assignment expression

c = 7
is done first and this expression value (7) is assigned to b and this in turn sets a to
7.

Now consider the expression
x = (a ∗ b + fnA()) + fnB();

The precedence rules ensure that a ∗ b will be added to the result of fnA( ) and the
result of fnB( ) will be added in. However, there is no guarantee that a ∗ b is
evaluated first: it might be that fnA( ) is evaluated first. In general, this should not
matter. Indeed, it would be very poor programming practice if fnA( ) altered the
values of a or b. The C compiler is also free to do a sequence of additions (+) or a
sequence of multiplications (∗) in any order it chooses, regardless even of
parentheses. So, in the example above, fnA( ) might be added to fnB( ) first and
only then added to a ∗ b. There are rare occasions when this might matter, as in
the addition of two large positive numbers with one negative number where the
order of the evaluations is significant to avoid overflow. If the order of evaluation
is critical, you need to break up the expression like this

x = a ∗ b;
x += fnA();
x += fnB();

One last, but critical aspect of order of evaluation concerns logical expressions. C
always evaluates expressions containing && and | | in the order you write them,
from left to right and halts its evaluation at the first sub-expression whose value
guarantees the value of the whole expression. Because the continued evaluation of
the expression is conditional on the result of each such logical operation, some
people would describe these operators as CAND (Conditional AND) and COR. So, in
the example,
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for (j=0; (j < JLIM) && (arr[j] != MARKER); j++)
...

the evaluation of the continuation condition will stop if (j < JLIM) is false since this
ensures that the whole expression is false. This is just as well if arr had only JLIM
elements. In practice, this frequently proves useful and it seems very natural. More
formally, a statement

if (j = a && b) ...;
is equivalent to

if (a)
j = b;

else
j = FALSE;

if (j) ...;
and the statement

if (k = a | | b) ...;
is equivalent to

if (a)
k = TRUE;

else
k = b;

if (k) ...;
where TRUE and FALSE are suitably defined.

For the most part, precedence works out pretty well as you would expect.
Whenever you are in doubt, it is best to use parentheses or do the calculation in
stages to ensure that an expression is evaluated as you wish. This also has the merit
of making the intention of the code clearer.

We now consider the actual operators that can be applied to the variables of
type int. We deal with operators in the groups indicated by the four columns of the
table on page 000: arithmetic, logical and relational, bitwise and then the others
that have been lumped together.

Exercise
What does the following expression do?

ch = getchar() == EOF

Answer
It gets a character, compares it to EOF and depending on the result of the
comparison, assigns the value 0 or 1 to ch. This is almost certainly not what the
programmer intended. Misconceptions about precedence can produce bugs that are
very difficult to find. Whenever in doubt, use parentheses. So, in this case, write

(ch = getchar()) == EOF
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Arithmetic operators
First we consider the unary arithmetic operators. Unary minus should be fairly
familiar. (Some C compilers also allow a unary plus operator.)

In the case of integer operands, the increment operator simply corresponds to
adding 1. Similarly the decrement operator subtracts 1. As you have seen, the
increment operator may either precede or follow its operand. Its position defines
when the increment occurs. Using the preincrement as in ++x will increment the
value of x and then use that value, where the postincrement operation x++ will use
the value before performing the increment. For simple statements like

count++;
the order of the increment makes no difference. However, it is significant in
statements that use the value as in the following

printf(" %d" , x++);
result = count++;

which print and assign values one smaller than the preincremented code below.
printf(" %d" , ++x);
result = ++count;

Preincrement or postincrement operators are extremely useful in conjunction with
arrays and structures (as we shall see in chapter 5).

The binary arithmetic operators should look quite familiar. They all return an
integer result. The divide operator / gives the value after the division, ignoring the
fractional part. The modulus operator % gives the remainder. So, for non-zero y,
and arbitrary x, x has the same value as the expression

(x / y) ∗ y + (x % y)
even for negative x and y.

Logical and relational operators
We have already seen how C deals with relational and logical expressions in
chapter 2’s treatment of controlling expressions in loops and selection statements.
We saw there that C has no special type for data that is restricted to the values
‘true’ and ‘false’. Instead it uses integers, with the convention that zero
corresponds to ‘false’ and all other values to ‘true’.

So we read code like
if (scanf(" %d" , &val) != 1)

error_exit(" expected a number − it was not there" );
thus: if the value that scanf returns is not equal to 1, indicating that one value was
read, invoke an error handling function. We may equally interpret it as testing
whether the expression

scanf(" %d" , &val) != 1
has the value zero and if so, the conditional code is executed.

By now, the relational operators <, <=, >, >=, == and != should be quite
familiar to you. Note that == is used to test for the equality of two operands. This
is quite different from the assignment operator = and you need to take care of the
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distinction since it is common to find both together in logical expressions like the
following

if ((c = getch()) == SPECIAL)
...

The logical operators !, && and | | should also be familiar. Given an operand, x,
which has a non zero value (corresponding to ‘true’) !x has the value zero
(corresponding to ‘false’): similarly applying ! to an expression with the value zero
gives a non-zero result (actually 1).

Bitwise operators
When you want to interpret an int as a bit pattern, the sorts of operation you need to
be able to do include complementing, shifting and masking. Having developed as a
language for systems programming, C provides this type of bit level operation.

The best way to think about the bitwise negate, ∼x, is in terms of the binary
representation of the operand, x. The bitwise negate operation ∼x gives the 1’s
complement, which is the binary sequence you get by reversing each bit in the
pattern for x.

Shift operators move the binary bit pattern the specified number of places.
Left shifts << get zeros pushed into the rightmost bit positions as the number is
shifted. For unsigned numbers, right shifts >> behave correspondingly but for
signed numbers the situation is machine dependent. Left shifts correspond to
multiplying by the specified power of two and right shifts to dividing.

The bitwise & (AND), | (OR), and ^ (exclusive OR) instructions can be used to
mask selected bits in a number. Take care not to confuse them with the logical
operators && and | |. In the example shown in the table on page 000, the bitwise &
(AND) gives zero because different bits are set in each operand. (The values in the
example of the table are x = 11, and y = 4. AND-ing bit patterns that end with 1011
and 0100 gives 0000 whilst OR-ing gives the bit pattern 1111.)

Other operators
It remains to consider the motley lot of ‘other’ operators.

The address-of operator & was used in chapter 1 with the argument to the
scanf function. It differs from all the operators we have discussed to date in that it
does not result in an int result. The address of a variable is a pointer . We will
discuss the operator (and its inverse) in the section on pointers later in this chapter.

The sizeof operator returns the number of bytes required to store the operand.
It is most often used with aggregate data types, described in chapter 5, but may also
be used with simple types as in

int x = sizeof (float);
which initialises the variable x to the size in bytes of a variable of type float. This
is used to improve portability as the code will be correct for any host machine on
which it is compiled.

One might also use sizeof with an expression as in the following.
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double z;
int m;
...
m = sizeof z;

Note that we can omit the parentheses when we take the sizeof an expression. So
the general form is

sizeof (type)
or
sizeof expression

From the precedence table on page 000, you can see that sizeof is a very high
precedence operator. This means that you generally need parentheses in complex
expressions following it.

As we have already noted, assignment is an operator. A classic use for it is
while ((x = getchar()) != SPECIAL)

Note that you need the parentheses around x = getchar() because the assignment
operator = has lower precedence than the relational operators != and ==.

We have not used the other assignment operators yet. They permit a
convenient shorthand where, for example, you wanted to increment x by the value
y. The expression

x += y
is equivalent to

x = x + y
where the former is shorter, and hence less prone to typing errors as well as being
clearer. (It also enables the compiler to generate more efficient code.) This
shorthand way of combining a binary operator with the assignment operator may be
used for all the binary arithmetic and bitwise operators.

The conditional operator corresponds to an abbreviated form of the if-else. It
is convenient in cases such as

max = x > y ? x : y;
which is equivalent to

if (x > y)
max = x;

else
max = y;

but the operator gives more concise code that clearly illustrates how the value
assigned to x depends upon the value of the expression (y > max). It is also handy
in cases like this

printf(" %d" , x > y ? x : y);
The last operator we have to discuss is the comma operator (,). One common use is
shown in the following for loop control line.
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int a, b;

for (
a = b = 1; /∗ loop initialisations ∗/
done(); /∗ loop termination condition ∗/
a++, b++ /∗ statement to be done on each iteration ∗/

)
{

...
}

where both a and b need to be initialised and both need to be incremented on each
iteration of the loop. The comma operator causes a sequence of expressions to be
evaluated from left to right and the value of the whole expression is that of the
rightmost of the expressions in the sequence. In this case, the comma operator
enables us to write code that clearly indicates the similar treatment of the two
variables a and b.

Of course, the use of the comma operator is not restricted to for loops. The
general form of a comma expression is

exp1, ..., expn

and the value of the whole expression is the value of expn.

Exercises

1. Given the declarations:
int i = 1;
short s = 7;
long l = 11;
unsigned u = 73;

What is the value of the following expressions (performed independently of
one another):

i. i++
ii. −−s

iii. i % s
iv. (i = 1) && (s != 3) | | (s == l / 2)
v. u = 031

vi. u & 017
vii. u | 017

viii. u ^ 017
ix. u & ∼03
x. u & ∼0

xi. i += 3
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xii. u /= s + l
xiii. u >>= 3
xiv. l & ∼017== 0
xv. (l & ∼017) == 0

2. What is the effect of the following lines?
x = a = 1, b = 2;
x = a = 1; b = 2;

3. What does the following statement do?
while (e1, e2)

doit();
4. What do the following statements print?

int x = 1;
int y = 2;

printf(" %d" , x, y);
printf(" %d" , (x, y));

Answers

1. The expressions have the values:
i. 1 (but i is incremented after this)

ii. 6
iii. 1
iv. this is a true logical expression with value 1
v. 031 (25 in decimal) and u is assigned that value

vi. 9 since it performs an AND on the last 4 bits.
vii. 79 (inclusive-OR with the last 4 bits)

viii. 70 decimal (exclusive-OR on the last 4 bits)
ix. 72 decimal (this masks the last two bits in a way that is independent of

the size of u and will work correctly on any machine)
x. This always gives the value of u which, in this case, is 73 decimal

xi. This gives 4 for the value of both i and the whole expression
xii. This gives 4 and is equivalent to

u = u / (s + l)
xiii. 9 (it shifts u three bits to the right)
xiv. 0 The higher precedence == is done first giving 0 which is AND-ed

with l.
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xv. 1 The subexpression (l & ∼017) masks off the last four bits of l, giving
0 and then the expression 0 == 0 is true and has the value 1.

2. The two lines differ only in that the first has a comma operator where the
second has a semi-colon. In the first, a is assigned the value 1 and then x is
also set to 1. Because = has higher precedence than the comma operator, b is
next assigned the value 2. The second line does exactly the same thing.
Note, however that the line

x = (a = 1 , b = 2);
would set a to 1, b to 2 and then that value, 2, would be assigned to x.

3. The loop is controlled by an expression that uses the comma operator. So,
before each loop repetition, e1 and e2 are evaluated and if e2 is non-zero
(true), the loop is executed, with doit being called.

4. The first printf statement prints the value of x, 1. The last argument, y, is
ignored. The second printf statement prints the value of y, 2, since the result
of the expression (x, y) is 2.

3.5  Characters
The type char is used to hold letters, punctuation marks and all the other
characters. We deal with it at this point, immediately after the integers, because
there is a straight forward mapping between the characters and integers.

3.5.1  Character values
Nearly all UNIX systems have ASCII as the underlying character set. Variables
and characters of type char are one byte long and can hold just one character. It
can be any one of the upper and lower case letters, the digits, punctuation marks,
blank or the many special characters. The following code fragment shows the form
of character constants, including some special characters.
char Big_J = ’ J’ ; /∗ initialises to an ordinary letter ∗/
char New_Line = ’ \n’ ; /∗ initialises to new line ∗/
char Tab = ’ \t’ ; /∗ initialises to tab ∗/
char Back_Sp = ’ \b’ ; /∗ initialises to back space ∗/
char Return = ’ \r’ ; /∗ initialises to carriage return ∗/
char FF = ’ \f’ ; /∗ initialises to form feed ∗/
char Slosh = ’ \ \’ ; /∗ initialises to \ ∗/
char S_Quote = ’ \’ ’ ; /∗ initialises to a single quote ∗/
char Null = ’ \0’ ; /∗ nul character ∗/
char Oct123 = ’ \123’ ; /∗ the character with octal pattern 0123 ∗/
Although the ASCII character set has a defined mapping onto the integers, it is
considered better style to avoid reliance upon this where possible. There are library
functions for many character manipulation operations that enable you to write code
that is portable and character set independent. ASCII characters are stored in one
byte, which is usually an eight bit quantity. In ASCII, the letters of the alphabet are
contiguous: so the numeric interpretation of ’a’ is exactly one less than that of ’b’
and so on through the alphabet. The digits ’0’ to ’9’ are also contiguous.
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3.5.2  Character operations
Because the ASCII characters are mapped onto the integers 0 through 127, many
but not all the integer operators are meaningful in the context of characters. For
example, it is often convenient to do arithmetic on characters as in the code below
which converts a lower case character ch to upper case.

char ch;
...
ch += ’ A’ − ’ a’ ;

In practice, C programmers think of characters in terms of their underlying integer
representation whenever it is convenient to do so.

Exercises

1. Write a code segment that reads a sequence of digits (characters ’0’ to ’9’ and
converts this to the equivalent decimal number, num.

2. Consider the code example above for converting a lower case character to
upper case. Suppose that you are sure that ch contains an alphabetic
character but cannot know whether it is already in upper case. You still want
to end up with it being upper case. Rewrite the code for this situation.

Answers

1.
num = 0;
while (isdigit(ch = getchar()))

num = num ∗ 10 + ch − ’ 0’ ;
However, you should realise that the standard libraries include the function
atoi which takes a string as an argument and returns the corresponding
integer. (We discuss strings in chapter 5 and the standard functions in
chapter 7.)

2. You need to add a test to ensure that the character is only modified when it is
lower case.

if (islower(ch))
ch += ’ A’ − ’ a’ ;

or
ch += islower(ch) ? ’ A’ − ’ a’ : 0

Observe that our initial code could have produced quite surprising results had
ch been upper case initially.

3.6  Enumerated types
Integers are a fundamental and very natural type on computers. Everything that is
stored on a computer is represented by a binary pattern which can be interpreted as
an integer. But integers are not always the most natural representation for entities
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that you may need to deal with in a program.
Enumerated types (like those in Pascal) allow the programmer to define a type

whose elements are identifiers . Suppose, for example, that a program keeps track
of when certain events occurred. We might need to store the time of day, the day of
the week, the month and the year. Integers are fine for time and the years but not so
appropriate for the day of the week or for the month. After all, the days of the week
already have perfectly good names of their own and it seems reasonable to
represent a day of the week as one of Sunday, Monday ... rather than some arbitrary
integer. The enumerated type allows you to create your own type for situations like
this by defining identifiers, like Sun, Mon ... which are the permissible values in
that type.

3.6.1  enum values
When you declare an enum, you define the collection of legal values for that type.
You enumerate the values, hence the name enum. The declaration of an enum for
the type day might be
enum day
{

Sun, Mon, Tues, Wed, Thur, Fri, Sat
};
and then you can declare variables of this type as follows
enum day today;
enum day tomorrow;
enum day payday;
Of course, enums are actually stored inside the computer as bit patterns and it is
natural to think of enums as being mapped onto the integers. In the example, when
the variable today has the value Sun, the binary pattern in that piece of memory
corresponds to the integer zero. Indeed, each of the values for the days of the week
will be mapped by the compiler onto the integers zero through to six.

Value in enum today Sun Mon Tues Wed Thur Fri Sat

Integer it maps onto 0 1 2 3 4 5 6

This mapping is only a default. You can define your own mapping as in the case:
enum indicator
{

dreadful = −10,
poor = −5,
OK = 0,
good = 10,
terrific = 30

} colour, texture, taste;
As this shows, you do not have to define the mapping onto consecutive values; they
can map onto any set of int values. Observe also that we have combined the
definition of indicator, with the declaration of three variables colour, texture and
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taste.
In general, the form of an enum declaration is
enum [type-identifier]
{

value-identifier [= integer] ,
...

} [variable-identifier, ] ... [variable-identifier];
You may separate the definition of the type and the declaration of variables of that
type if you wish. It is frequently better to do so. Then you can order the type
definitions and variable declarations for greatest clarity.

3.6.2  enum operations
Bearing in mind that enums map onto the integers, but that the programmer may
choose the mapping, there are very few operations which are generally appropriate:
you can test for equality and inequality between enums and do simple assignments.
Since you define an ordering on the enum identifiers, you would expect to be able
to check whether one enum value is less (or greater) than another. As long as you
explicitly cast the enum variables to ints, C will allow you to do so.

Most other operations make little sense; for example, it is hard to imagine why
you would want to multiply two enums and most C compilers give an error
message if you try.

In practice, programs exploit the mapping of the enum onto the integers as in
this case

if (today == Sat)
tomorrow = Sun;

else
tomorrow = (enum day)((int)today + 1);

where the else part converts the enum variable to an int and then performs the
arithmetic. Finally, it converts back to an enum day.

The standard libraries do not provide functions that can do I/O on enums. So,
when you want to write enums, you need code like this.

switch (today)
{
case Sun: printf(" Sunday" ); break;
case Mon: printf(" Monday" ); break;
case Tues: printf(" Tuesday" ); break;
case Wed: printf(" Wednesday" ); break;
case Thur: printf(" Thursday" ); break;
case Fri: printf(" Friday" ); break;
case Sat: printf(" Saturday" ); break;
}

To read strings and interpret them as enum values, you should use standard
functions (gets, fgets, scanf, fscanf and sscanf treated in chapter 7). Since
enums are most heavily used for data internal to the program, the need for
input/output is not very pressing.
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Exercises

1. Define a type that is suitable for representing the months.
2. Write code that reads an indicator value as one of the strings defined earlier

in this section.

Answers

1. One possibility is
enum month_type
{

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
};

2. A simple version is
switch (getchar())
{
case ’ d’ : indication = dreadful; break;
case ’ p’ : indication = poor; break;
case ’ O’ : indication = OK; break;
case ’ g’ : indication = good; break;
case ’ t’ : indication = terrific; break;
default: input_error();
}

while (isalpha(getchar()))
;

3.7  Float and double
The floating point or real number types, float and double are used to represent
numbers with a fractional part. Although these types permit the representation of
extremely large and extremely small numbers they bring problems too. (See a
numerical analysis text for problems of floating point rounding errors.)

3.7.1  Floating point values
Floating point numbers are stored as a mantissa and an exponent. The size of each
is machine dependent, with the mantissa size defining the number of significant
digits that can be represented and the exponent setting a limit on the magnitude of
the largest and smallest number. The type float gives a single precision floating
point number and double gives a double precision type that may have more
significant digits and a larger range of magnitudes.

The more fundamental type is double: all floating point constants are
handled as double. In addition, float variables are converted to double before
arithmetic operations are performed. We return to this matter in the section on
implied conversions later in this chapter. Some examples of the form of floating
point constants are:
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/∗ a small positive number in scientific notation ∗/
float a = 6.419e−2;
/∗ a large negative floating point number ∗/
float b = −8495364.2;

3.7.2  Floating point operations
Many of the operators that apply to integers are also appropriate for the floating
point number types. The arithmetic operators are applicable, except for increment
and decrement where it is not clear what size increment is natural for a floating
point number. (In fact, they do add or subtract 1.0 which is what you might
expect.)

Of the relational operators, the ones that test whether an operand is less than or
greater than are relevant. Because of floating point errors, tests for exact equality
or inequality are dangerous. (But lint doesn’t help here.) Similarly, the logical and
bitwise operations are not normally appropriate. The other operations listed in the
table of integer operators (except %) are appropriate and have essentially the same
meaning.

Some examples of input and output with real numbers are shown below.
Although we saw some simple I/O on floating point numbers in chapter 1, the full
range of formatting facilities are described in chapter 7 starting on page 000. We
could print the variables a and b, that we declared in the previous section thus:

printf(" %e \n %f \n" ,a ∗ b, b / a);
This will produce the following output

−5.453174e+05
−132347160.000000

The same numbers could be read using a scanf with the same format string as is
used in the printf.

3.8  Pointers
In chapter 1, you saw the use of a pointer in a call to the scanf function. It looked
like this:

scanf(" %d" ,&ftemp);
The scanf function requires a pointer to a memory location as its argument. The
function does its work and stores the required value in the location specified by the
pointer.

For the types described so far in this chapter, a declaration causes a location in
memory to be reserved and a name and type to be associated with it. By contrast,
you can think of a pointer as a data type which contains an address that is an
indirect way to get to some other data. The declaration of a variable like

char ch = ’ $’ ;
can be depicted thus



-- --

60 C in the UNIX Environment

ch

’$’

Now consider the effect of a declaration for a pointer variable which we write as ∗p
and we initialise p to point to the variable ch.

char ch = ’ $’ ;
char ∗p = &ch;

This can be depicted as

p ch

’$’

This situation can also be created with code like this:
char ch;
char ∗p;

p = &ch;
∗p = ’ $’ ;

Pointers often pose problems for novice programmers. This is primarily due to the
need to be clear about the distinction between

• the name of a variable (its identifier)
• the value of the variable and
• the address of the variable (which may, in turn, be the value of a pointer

variable).
In general, pointers are a dangerous yet powerful data type. They are also
indispensable in C.

Computer addresses can be represented by integers and so it is sometimes
appropriate to think of pointers in that way. However, there are many possible
problems with this view: integers can correspond to addresses which are not
available to your program and on some machines, pointers and ints have quite
different sizes. (For example, several M68000 C compilers.) In the past, many C
programmers have ignored this and in doing so, have produced code that is not
portable: worse still, such programs may well run with subtle errors. You can use
lint to check for many problems like this.

3.8.1  Pointer values
When you declare a pointer, you are defining an identifier that gives you indirect
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access to other data. Suppose we have the following declarations
char ch;
char ∗letterp;
char ∗p = &ch;

The pointer p is initialised to point to ch. On the other hand, letterp is
uninitialised. Elsewhere in a program it may be assigned a value so that it points to
a location. The value of a pointer variable can be

• the address of some variable,
• a special NULL value that indicates that the pointer does not point to anything
• or it can be undefined because no value has been assigned to it.

NULL has the value zero and is defined in stdio.h.
You can define a pointer to any type, including other pointers and the

aggregate data types (treated in chapter 5).

3.8.2  Pointer operations
As you would expect, it is permissible to check whether pointers are equal or not.
But you may only compare pointers that point to the same type. A pointer to an
integer and a pointer to a character are of different types. Some simple additive
operations on pointers make sense when you are dealing with the aggregate data
structures treated in chapter 5. We will return to them there.

We now illustrate some simple uses of the indirection operator (∗) and the
address-of operator (&).

char ∗p; /∗ a pointer to a character ∗/
char ch = ’ 1’ ; /∗ a character variable ∗/

p = &ch; /∗ p now points to ch ∗/
printf(" %c" , ∗p);
printf(" %c" , ch);

Both of these printf statements have the same effect. The first finds the value of ch
going indirectly via the pointer p. The second printf prints the value of ch directly.

Both ∗ and & are in the group of highest precedence operators. As we
discussed on page 000, C uses short-circuit evaluation of logical expressions. This
is very convenient in cases like:

if ((p != NULL) && (∗p == VAL))
...

Should the first part of the expression be false, the rest of the expression will not be
evaluated. So there is no difficulty with ∗p in the second part of the expression
when p is not defined.

Exercise
This should give you a little familiarity with the notation associated with pointers.
Assume the following declarations and work out what the code fragment prints.
(You may find it helpful to draw pictures of the pointers and other data as we have
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done in our introduction to pointers.)
int num = 42;
int ∗np = &num;
int ∗ap;
char ch = ’ b’ ;
char ∗cp = &ch;
char ∗∗ppc;
printf(" %d %c %c \n" , (∗np)++, ch, ∗cp);
printf(" %d %d \n" , ∗np, (∗np+7));
∗np += 4; /∗ observe the use of a pointer on the left hand

side of an assignment ∗/
ap = np;
∗cp = ’ k’ ;
ppc = &cp;
printf(" %d %d \n" , ∗np, ∗ap);
printf(" %c %c %c \n" , ch, ∗cp, ∗∗ppc);

Answer

42 b b
Note that if the parentheses were omitted, the pointer itself would have been
incremented, rather than the value that it points to. Observe that ∗cp is the same as
∗(&ch) which is the same as just ch. Note also that after this printf, num has been
incremented.

43 50
The effect of ++ in the earlier statement is seen here.

47 47
Both np and ap point to num.

k k k
These three all refer to the same location ch.

3.9  typedefs
The typedef facility allows you to define an alias (or alternate name) for a type as
in

typedef float Length;
Length height;

Length
determine_size()
{

...
}
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where we have, essentially, defined Length to be a synonym for float. This makes
it clearer that the variable height represents a length and that the function
determine_size returns a length.

Note that a typedef does not define a new type, but rather an alias for one of
the existing types. The typedef is most useful in substantial data structures and we
will see it again in chapter 5.

However, even simple uses are valuable for improving the clarity and
portability of programs. For example, we might use the following typedef
typedef int Message_size;
in a program that deals with messages of a size that can be represented by an int on
our current machine. Should we port our program to a machine with much smaller
ints, we can amend this typedef to make Message_size a long. The simple
modification to this one typedef will ensure that our whole program deals with the
new definition correctly.

3.10  Conversions
Type conversions can occur either implicitly or explicitly. You should use explicit
type conversions to make your intentions clear. This section discusses both explicit
and implicit conversions as well as the actions that take place during a conversion.

3.10.1  Explicit type conversions - casts
There are many occasions when you need to change the type of a variable or
expression. We met several in chapter 1. Now, consider the following example
where the int expression is coerced or cast to a char.

int i;
char c;

c = (char) (4 ∗ i + OFFSET);
After the expression is evaluated, it is cast to a character and then it can be assigned
to a variable that is of type char. When you cast a variable, its value is adjusted
according to the rules described later in this section. The general form of a cast is

( type ) expression

Note that the type can be a pointer as in the following:
char ∗p;
int x;

p = (char ∗)x;
You can also cast an int to an enum, as in this case:
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enum day
{

Sun, Mon, Tue, Wed, Thu, Fri, Sat
};

day workday;
int num;

workday = (enum day) num;

3.10.2  Implicit type conversions
At the outset, it should be noted that this and the next section may seem rather
complicated. In fact, they look worse than they really are. Most reasonable type
conversions work out pretty naturally and you can skip this and the next section on
a first reading of the book.

First let us consider what happens when you need to do arithmetic on variables
of different types. For example, the code below uses both ints and shorts.

short a, b;
int x, y, z;
...
x = y + z ∗ a + b;

Before performing the arithmetic operations, the short ints are converted to
ordinary ints. This is described as promoting the short ints. In general, when two
types are involved in an arithmetic operation, the lesser one is promoted using what
are called usual arithmetic conversions. In addition, C performs so-called general
arithmetic conversions that promote all short, char and float data to the
fundamental data types, int and double.

General arithmetic conversions
These apply to any arithmetic expression with data types short, char or float. The
conversions

char, short → int
float → double

ensure the same precision in all integer and all floating point arithmetic operations.
We will meet the same conversions in function arguments in chapter 4.

Conversions of operands of different types in arithmetic expressions
Once the general conversions just described have been performed, an arithmetic
expression may still have operands of different types. In this case, the following
rules are applied in the order shown.

1. If any operand is a double, the other operands and the whole expression
become double otherwise
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2. if any operand is a long, the other operands and the whole expression
become long otherwise

3. if any operand is a unsigned, the other operands and the whole expression
become unsigned.

So, for example, an expression that adds a long and an unsigned would see the
unsigned converted to a long. (You will get an opportunity to practise these
conversions in the next set of exercises.)

Conversion of types across assignment expressions
The sections above deal with arithmetic expressions. In the case of assignment
expressions, the type of the left hand side dominates. So in code like this

int kk;
float y = 1.4;

kk = y + 2.7;
the right hand side (the float expression y + 2.7), is evaluated as a floating point
expression (giving the value 4.1) and this is converted to an int before the
assignment. The whole assignment expression also has type int.

3.10.3  Actions that occur during conversions
We now consider what actually happens to values that are converted. Most of this
follows logically from the way that each type is represented on the machine and the
inherent difficulty in conversion between intrinsically different types. One of the
most important conclusions you should draw from this section is that type
conversions, both implicit and explicit, can pose particular problems. First, let us
consider some of the more obvious and safe conversions listed below.

machine dependent,
may sign extend or not,
ASCII characters remain non-negative

char → short int, int, long int

short int → int or long int sign extended
int → long int sign extended

float → double zero padding of mantissa
In general, when you want to convert a quantity of one size to some larger type,
you would expect the sign and the value of the quantity to be preserved with the
extra bits bits being padded appropriately to achieve this effect. In the case of
integer quantities, this is referred to as sign extension and as you can see, there are
several conversions where this occurs. So, in those cases, the conversion should act
just as you would expect. Note that the conversion from a char to any of the int
types is guaranteed to be well behaved only in the case of ASCII characters, which
remain non-negative. For floating point conversions to double, the sign and value
are preserved by padding out the mantissa with zeros.

Now all other conversions are fraught with dangers of various sorts. Consider
first the case of converting a particular quantity to a similar but smaller type.

long int → int, short int, char high bits discarded
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int → short int or char high bits discarded
short int → char may lose high bits
double → float round and truncate,

overflow may occur

Clearly, we are in trouble if we started with a value that does not fit in the new,
smaller type. Where such conversions are between int types, the high bits of the
initial commodity are discarded. For truly numeric entities this could pose a
problem: in a conversion that goes to an 8-bit type from some larger one, a number
like 258 would suddenly become 2. Of course the conversion can be made safe by
testing the quantity before doing the conversion. The conversion from double to
float also behaves as well as can be expected. The double quantity is rounded to
fit a float. On machines where floats are smaller than doubles, such a conversion
can cause a loss of accuracy and, even worse, if the exponent no longer fits,
overflow can occur. (This may stop the program with a floating point error
indication.)

Now we need to deal with conversions that pose logical problems in that they
involve inherently different types.

float, double → integer type, char machine dependent
integer type, char → float, double may lose precision

unsigned → signed type machine dependent
unsigned → long zero padding

Conversion from an int to a floating point type may mean a loss of precision.
In a conversion in the opposite direction, to an int, there are clearly problems with
the fractional part of the number and if it exceeds the largest int. Conversions
between signed and unsigned ints also pose problems. For example, the number
−1 in an 8-bit quantity on a two’s complement machine is represented by eight 1’s
which, as an unsigned quantity, would be interpreted as 255. If you were expecting
the signed value −1 to become the unsigned value 1, you may be in for a shock.

The relationship between pointers and ints is clearly very close. On most
machines, both are the same size and conversions between them are
straightforward. So both the conversions

integer type → pointer type machine dependent
pointer type → int machine dependent

would usually be a no-op (the bit pattern is not changed). Some programmers are
sloppy about making any distinction between these two types. This is dangerous in
machines where ints and pointers are different sizes.

Finally, we have to consider conversions involving enums.

enum → int safe: gives underlying mapping
int → enum safe for mapped int values

There are many instances where one may wish to cast an enum to an int. As you
would expect, this simply gives the integer value that the enum maps onto.
Similarly, conversions from int to an enum are straightforward provided that the
int value is one for which that enum has a mapping. Any other conversion
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involving enums are inappropriate.

Exercises
Assume the following declarations.

unsigned int x;

short int k;
int kk;

char ch;
char ∗pc;

float y;
double yy;

For each of the expressions below, determine any conversions that will be
performed and the type of the result.

i. y = 1.0
ii. y = yy ∗ kk

iii. yy = y
iv. yy = (kk = 2.3)
v. pc = kk

vi. y = x + 1
vii. ch = ch − ’a’ + ’A’
viii. kk = (kk) ? k : y

Answers

i. Floating point constants are handled as double, so 1.0 is a double, it is
converted to float before the assignment and the result is float.

ii. kk is converted to double before the multiplication; the right hand side of the
assignment is converted to a float before the assignment and the expression
is float.

iii. y is converted to a double and the result is double.
iv. 2.3 is double, but is converted to int (2) when assigned to kk. The result of

the expression (kk = 2.3) is converted to double and the whole expression is
double.

v. This expression differs from the preceding ones that involved arithmetic and
assignment conversions. Here we have an implicit conversion of an integer
to a pointer. kk is converted to a pointer to char, the resulting expression is a
pointer to char. However, lint and most compilers will give a warning and
you really should make an explicit cast like this
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pc = (char ∗)kk
vi. x is an unsigned int so 1 is made an unsigned int and the result of the

expression on the right hand side is unsigned int. This is converted to float
and the result of whole expression is float.

vii. ch, ’a’ and ’A’ are converted to int for the evaluation of the expression on the
right hand side. Then, this is converted to a char and the result is a char.

viii. This evaluates the int expression kk first. If it is non-zero, the value of k is
converted to an int, assigned to kk and the result is int. If the evaluation of
kk is zero, the value of y is converted to an int, assigned to kk and the result
is again int.

3.11  Summary
The fundamental types are

• int
• double

The integer type qualifiers are
• short
• long
• unsigned

Other types closely related to ints are
• char (maps onto ASCII integer range)
• enum (user may define mapping onto integers)

The floating point types are
• float
• double

Pointers
• can point to a variable of any type, including pointer types
• are the mechanism for returning parameter values from functions
• are not ints

typedefs allow the programmer to define an alias for a type

C is rich in operators. The ones we have met are
• unary − ++ −− ! ∼ & sizeof ∗ 
• binary (associate left to right)

• arithmetic ∗ / % + − 
• shift << >> 
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• relational test < <= > >= == != 
• bitwise & | ^ 
• logical && || 

• conditional (associates left to right) ? :
• assignment (associate right to left) = ∗= /= %= += −= 
• comma (associate left to right)

Conversions
• can be explicit using casts
• default:

• general arithmetic conversions reduce variables to fundamental types
• mixed type arithmetic conversions reduce all variables in an arithmetic

expression to the same type
• conversions across assignment expressions convert the type of the right

hand side of the expression to the type of the left hand side
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Functions

In this chapter, you see how to
• use functions
• write functions
• limit the visibility of identifiers to a block, function or file
• effect data abstraction and data hiding
• define the storage class of data items as auto (the default), static, register

and extern
• initialise variables of each storage class
• compile and run multifile programs.

4.1  Introduction
One might view programming as building a new high level language: you write the
main program in terms of statements, some of which are primitive statements in C
and others are calls to functions (which may be thought of as statements in the
higher level language that you create for the particular programming task).

One of the strengths of C in the UNIX environment rests on the availability of
a powerful collection of functions in the standard libraries. The functions that you
develop, along with those in the standard library, constitute a tool kit that enhances
your programming productivity. The tools approach pervades the philosophy of C
and UNIX. (For more on this, see ‘Software Tools’ by Kernighan and Plauger.)
There is considerable art in learning how best to define functions appropriate to a
task. If you can do it skilfully, you will build up collections of functions that are
useful in a range of different programs. You can then create your own special
purpose libraries.

The usual C style is to write programs with many small functions and
substantial C programs tend to be spread over several files. This permits separate
compilation of just the parts that are under development at any stage. It also gives
control over the visibility of identifiers between files. But since functions can be
compiled separately, the compiler cannot always check consistency of function and
argument types. You need to use lint for this.
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Pascal programmers will find that program structure in C is quite different.
You cannot nest functions and scope operates quite differently. Identifiers can be
local to one function (or a block within it) or they can be global to the functions in a
file, or global to the whole program. Global data in a file can also be explicitly
imported by other files. The C programmer should be aware of the mechanisms for
storing data since this defines some aspects of scope and the forms of
initialisations.

It is characteristic of C and UNIX that the facilities available are simple but
sufficient. In keeping with this, C provides only one type of subprogram, the
function , and only one mechanism for passing arguments, the call by value
mechanism. So, as we saw in chapter 1, a function that needs to return more than
one value must use arguments that are pointers which simulate call by reference.

4.2  Using functions from the standard libraries
Before we plunge into the issues relevant to writing and using your own functions,
we deal with the simpler matter of using the standard library functions. We
illustrate important points in using C functions with the following example.

double sin();
double n;
double x;

scanf(" %f" , &n);
x = sin(n);

Declaring functions: defining the type of the returned value
The code above invokes two functions. First is the scanf function which we have
used before and as here, we have not bothered to declare it. This is because the
default function type is int and scanf returns an int (the number of items read). We
could have added a declaration

int scanf();
but it is usual to omit declarations for int functions from the standard library.

By contrast, we must declare sin because it returns a value of type double.
Had we failed to declare sin, the double precision floating point value that it
returned would have been interpreted as an integer! Fortunately, lint warns about
this sort of mismatch between the type of a function at the point where it is defined
and at each place it is used.

So, you need the function declaration to specify the type of the value returned.
It has no details at all of the arguments. The general form of a function declaration
is

type function-identifier ( );
where the default type for undeclared functions is int.

Using the value returned by a function
Let us look more closely at the following call to the scanf function.
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scanf(" %f" , &n);
In this form, it seems that the only value that the function affects is the argument, n.
But, scanf also returns the number of input items that it succeeded in reading: if an
end of file is encountered before a value can be read, the value −1 is returned. If we
were writing a program in which there were some chance that scanf might not
succeed in reading a number, we should use code like this.

if (scanf(" %f" , &n) != 1)
error_exit(" number expected on input − not found" );

In fact, it was rather sloppy of us to just ignore the value returned by scanf and lint
would warn us of this. Had we been sure that there was no need to test the value
that scanf returned, we should have made this clear by casting the value returned to
be void like this

(void) scanf(" %f" , &n);
In general, the way to explicitly disregard the value returned by a function is

(void) function-call

and we recommend that you use void in cases like the scanf above. Then you can
consistently write lint-free programs (at least, in this respect).

Invoking functions: arguments
As you might expect, a function argument may be any expression of the appropriate
type. Permissible expressions include a simple constant value, a variable name or
any arbitrarily complex expression that may include other function calls. The
actual arguments, those that appear in the function call, should have the same type
as the formal arguments (as they appear in the actual function code). So, for
example, sin can be invoked with any expression that evaluates to a double.

The arguments and values returned by a function are reduced to the
fundamental types. So, just as we saw in the general arithmetic conversions (page
000 of chapter 3), char and short become int and float goes to double. So, we can
call sin with a float argument because this is promoted to a double. However, int
types, char, enum or pointer type expressions give incorrect results. You need to
use lint to flag mismatches between the types of actual and formal arguments.

Now let us consider an example that illustrates a number of interesting
function arguments. It is a call to the library sort function, qsort (quicksort).
#define N 100

int nums[N];
int compare();

qsort(nums, N, sizeof (int), compare);
Qsort requires four arguments. Our first argument, nums, is the array that is to be
sorted. In fact, it is better regarded as a pointer to the first item to be sorted. The
second argument, N is the number of items to be sorted and its value has been set in
a #define. The third argument must specify the size, in bytes, of each data item.
Finally qsort requires that the user supply a function, in this case compare, to
determine the relative order of any pair of the items to be sorted.
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In general, a function invocation has the form
function-name (actual-argument-list);

where these actual arguments match the formal arguments defined in the function
code.

Exercises
Are the following legal calls to the sin function?

i. sin(.7);
ii. sin((double).7);

iii. sin(0x1f1);
iv. sin(1);
v. sin(x);

vi. sin(4 ∗ sin(3.872) − y);

Answers

i. sin(.7) is fine because .7 is a floating point constant and hence is of type
double.

ii. sin((double).7) has a precise match between actual and formal arguments
but since .7 is a double anyway, this form would be unnecessary and very
unusual.

iii. sin(0x1f1) might be alright if you had really set up this constant correctly but
it is unlikely and certainly looks suspicious. lint would complain about this
and if you really wanted it, you should write it as

sin((double) 0x1f1);
iv. sin(1) is wrong because the argument is an int.
v. sin(x) is alright if x is declared as either float or double, incorrect otherwise.

vi. sin(4 ∗ sin(3.872) − y) is acceptable because the expression is a float (the
constants and variables that are not doubles undergo appropriate
conversions).

4.3  Writing your own functions
To begin, let us consider a very simple example: we write a compare function to
be used in conjunction with the sort function qsort. We require the function to
accept two arguments, x and y, which are both pointers to ints and compare must
return +1 if ∗x is the larger, −1 if ∗y is larger and 0 if ∗x and ∗y are equal.
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int
compare(x, y)
int ∗x;
int ∗y;
{

if (∗x > ∗y)
return 1;

else if (∗x == ∗y)
return 0;

else
return −1;

}
This function performs a simple three way branch on its arguments and returns the
appropriate value. It is no more complex than the functions we met in chapter 1 but
we now use it to illustrate the general form of functions.

Function header
The first four lines of this function are the header. The first gives the type. If we
omit it, the function defaults to type int which would make no difference in this
case. It is generally better to make your intentions clear by explicitly defining the
function type. Next is the function name and formal argument list: we always put
this on a new line so that we can easily use a text editor to find a function definition
(as it is the only place where the function name appears at the very beginning of a
line). The remainder of the header declares the arguments. Any arguments that are
used should be declared. If you fail to do so, they too default to type int and even
when this is what you intend, it is better practice to explicitly declare all arguments.
The general form of a function is

[type]
function-identifier( [argument-list] )
[argument-declarations]

where type can be void or any type other than the array (though a pointer to an
array is fine) and the default is int.

Now let us consider the header of the standard qsort library function, which
illustrates several types of argument declarations.



-- --

Functions 75

void
qsort(data, number, size, compare)
int ∗data; /∗ pointer to the beginning of the data to be sorted ∗/
int number; /∗ number of data items ∗/
int size; /∗ size, in bytes, of each data item ∗/
int (∗cmp_func)(); /∗ pointer to a user defined comparison function ∗/
{

int ∗p;
int ∗q;
...
if (cmp_func(p, q) == 1)

/∗ p points to the larger ∗/
...

}
The first argument is declared as a pointer to an int. This is one way to declare an
array of ints (and we return to the matter of aggregate data types as arguments in
chapter 5). The next two arguments are fairly obvious but the last shows the form
of an argument that is a function name: it is a pointer to the function. Note that you
need the outer pair of parentheses because the declaration
int ∗cmp_func();
declares a function that returns a pointer to an integer. We also illustrate how qsort
can refer to such an argument.

Function body
The function body is a block: a sequence of declarations and of statements enclosed
in braces. So, for example a minimal function block, that does nothing looks like
this

{
}

A typical function has several declarations and statements, including at least one
return statement as in our compare function. A function may return no value as in
the following function (which we saw in chapter 1).
void
string()
{

for (;;)
{

switch (nextchar())
{
case ’ " ’ : return;
case ’ \ \’ : nextchar(); break;
}

}
}
In this case, the function returns upon encountering a double quote. Even when
there is no return statement, as in this function (also from chapter 1)
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void
character()
{

if (nextchar() == ’ \ \’ )
nextchar();

nextchar();
}
the function terminates and returns when the last statement has been executed. As
you would expect of functions that return no value, string and character are
declared as void.

The general form of the return statement is
return [expression];

Note that some people like to enclose the return expression in parentheses. This is
fine but unnecessary.

The function return expression is converted to the function type or, in the case
of char, short or float functions, it is reduced to the more fundamental types, int
and double.

A function can invoke any function within the same program or in a library
that is linked to it. A special case of this is when a function invokes itself, either
directly by calling itself or indirectly by calling functions that call it. It is often
possible to write simpler and more elegant code using such recursive calls.

Exiting a program
You can exit a program from any point within any of its functions using the
standard system call function exit. Consider this example

if (scanf(" %d" , &n) != 1)
exit(1);

where the program gives up if scanf fails to read a number. The argument to the
exit system call is the exit code that the program returns. This value can be tested
from the shell (or other invoking program) and so, the exit code constitutes a
limited form of communication between programs. Programs that terminate
normally should return the exit code 0. The exit code can be tested as in the
following sequence of Unix commands which invoke a program and use the exit
status to print an appropriate message:

if cmp −s tfile tfile2
then

echo "tfile and tfile2 are identical"
else

echo "tfile and tfile2 are different"
fi

The program cmp is the UNIX command that compares two files. When invoked
with the −s argument cmp returns with exit code 0 to indicate that the files are
identical and 1 to indicate that they are different.

You can also use the return statement within the main function to quit the
program at some point other than the end of main. However, the value returned
varies between systems. In the interests of portability, we recommend you use only
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exit to leave a program.

Communication between functions
Like most programming languages, C has two means of communication between
functions:

• arguments and
• via data that is global.

As we saw in chapter 1, C arguments are passed by value. On the other hand, an
argument that is a pointer type permits a function to return a value as we have seen
in scanf. Although a function cannot directly alter the value of one of its
arguments, it can store a value at the location that the pointer argument points to.

Introductory programming texts wax lyrical on the merits of using arguments
(also called parameters) for clean interfaces between the modules of a program.
Arguments make function interfaces explicit and, in the case of many functions
they also give flexibility. The next section gives some background on the storage
of data and then we see how you can use global data for communication between
functions.

Exercises

1. Given a function with the header
int
doit(a)
char ∗a;

and the following declarations,
int ∗x;
char y;
char ∗z;

which of the following is a correct call to the function?
doit(&x);
doit(&y);
doit(&z);

2. Write a header for a function that plots a function. Its arguments should be
scaling factors for the x- and y-axes and the function to be plotted.

3. Suppose the following function has been defined.
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void
silly(a,b,c)
int a;
int ∗b;
int c;
{

a += c;
(∗b) ++;

}
What is the effect of

int x = 0;

silly(x, &x, 2);

Answers

1. doit(&y) is the only correct call, as it is the only pointer to a char, as required
by doit. &x is a pointer to a pointer to an int. &z is a pointer to a pointer to a
char, not a pointer to a char.

2.
void
plot(xscale, yscale, fn)
double xscale;
double yscale;
double (∗ fn)();

Note, however, that there is a standard plot library, so you should check its
facilities before you write a function like this.

3. After the function call, x has the value 1 (because, the function’s increment
of a is purely local and ∗b in silly is the same as x in the calling code.)

4.4  Runtime stack
We will soon meet aspects of scope that are easier to understand if you appreciate
the runtime stack mechanism that accommodates data for each block as it runs. To
see how this storage model operates, consider the following skeleton of a program
that has an input phase, followed by some processing and printing.

main ()
{

int m1, m2, m3, m4;
...
Do_Input();
Process_and_Print();

}
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Do_Input()
{

int i1, i2;
...

}
Process_and_Print()
{

int p1, p2;
...
calc(p1, p2);

}
calc(x, y)
int x;
int y;
{

int c1;
...

}
Before the main function can start to run, all the variables declared in it need to be
allocated storage. Since there are just four of them, the allocation would appear as
in Figure 4.1.

____________________

Direction m1
of ____________________

stack m2
growth ____________________

↓ m3
____________________

m4 ⇐ top of stack
____________________

Figure 4.1. Stack when main starts
We show the stack growing down because that is what happens in most systems.

As main runs, it invokes Do_Input, which has two variables. Space is
allocated for these, too, on the runtime stack so that just before Do-Input starts to
run, the stack is as shown in Figure 4.2.



-- --

80 C in the UNIX Environment

____________________

Direction m1
of ____________________

stack m2
growth ____________________

↓ m3
____________________

m4________________________________________

housekeeping
data for

Do_Input
____________________

i1
____________________

i2 ⇐ top of stack
____________________

Figure 4.2. Stack when Do_Input starts
For the moment we will not consider the sort of housekeeping data that is required:
we will stick to the simple model of how data declared in each block is allocated
runtime storage. Conceptually, upon the completion of the function Do_Input, all
the space for its data disappears. This means that the runtime stack reverts to the
form it had immediately before this function was called (as in Figure 4.1).

A very similar set of steps takes place when Process_and_Print is invoked.
The physical storage that is allocated for this function will, in fact be that which has
just been used by Do_Input. However, Process_and_Print invokes calc, so that
at the point that calc starts to run the stack will be as depicted in Figure 4.3.
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____________________

Direction m1
of ____________________

stack m2
growth ____________________

↓ m3
____________________

m4________________________________________

housekeeping
data for

Process_and_Print
____________________

p1
____________________

p2________________________________________

housekeeping data
for calc

____________________

x
____________________

y
____________________

c1 ⇐ top of stack
____________________

Figure 4.3. Stack when calc starts
So the stack grows and shrinks as functions are invoked and complete execution.
This has important implications: with the exception of the data associated with the
first function to be invoked (main) you cannot assume that variables on the stack
have some default initial value. In fact, variables that you do not explicitly
initialise start out with the value that happened to be allocated to the last variable
that occupied the same physical memory location and this is unpredictable.

4.5  Program structure and scope
A C program is a collection of functions. The main function is like any other in all
but one respect: you must have a main function because it is the point at which
execution of the program starts. The functions that constitute a program may be
stored in one or more files and you may arrange them in any order you choose.
However, it is usual to put main first in its file so that someone reading the
program will encounter an overall view of the program first. Similarly, it is usual
to place functions within a file in roughly their order of execution, with high level
ones first.

You cannot nest functions. So a typical program has the following structure
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global declarations

main function

other functions and global declarations interspersed

The scope of an identifier defines the part of the program where you can refer to it.
Scope (or visibility) can be limited to

• a single block,
• a single function,
• the functions in a given file or
• it may be global to the whole program.

It is good programming practice to make identifiers as local as possible. So, a
variable that is needed in just one block should be declared at the beginning of that
block. In writing large programs, there is often data that must be shared by several
functions. In that case, you should make that data available only to the functions
that need to use it. To do this, you group related functions and declarations
together in one file. As we discuss scope, you will see that there are somewhat
different rules for function identifiers and variable identifiers .

Scope within blocks
The declarations within a block hold for the scope of the block, from the point of
their declaration to the brace that closes that block. We illustrate this in Figure 4.4.

}

}
...

int d;
char a;

{ /∗ inner block ∗/

...
int b;
int a;

{ /∗ outer block ∗/

Scope of variable identifiers
outer inner

daba

Figure 4.4.  Scope in a block
The scope rules ensure that the variable b is visible in both the inner and outer
blocks. The variable d is declared in the inner block and is only visible there; the
outer block cannot refer to it. The identifier a is visible in the outer block as an int



-- --

Functions 83

but it is declared again as a char in the inner block. So references to a in the outer
block concern one variable, an int, and references to a in the inner block relate to a
completely different variable, which just happens to have the same name. Reusing
identifiers like this is potentially confusing and you should avoid it.

Storage class
The variables within a block are one of three storage classes:

• auto,
• static or
• register.

Within blocks, all three storage classes follow the scope rules above; elsewhere this
is not the case. We now describe each of these storage classes.

Automatic variables (auto)
This is the class of variable that is stored on the runtime stack. It includes variables
like those in Figure 4.4 as well as a2 and a5 of Figure 4.5. The default storage
class for variables declared within blocks is automatic (also called auto) which
means that their storage is allocated as their block starts to execute. When the block
finishes, this storage automatically disappears. The same storage may then be re-
used by the next block that executes.

Static variables
As their name suggests, static variables, are persistent: they are not destroyed on
completion of their block. So, for example, if we alter the declaration of a5 (in
Figure 4.5) to

static char a5;
a5 retains its value between function calls. So, if a5 has the value q at the end of
the first call to A, a5 retains that value until the next time A is invoked. Static
variables exist for the full duration of the program execution.

Register variables
You use the register storage class to give the compiler a hint that it should allocate
data to a register. However, compiler writers usually devote considerable effort to
ensure that the code their compiler generates makes efficient use of registers. If
you know your C compiler and your machine exceedingly well, you may
sometimes decide that you can make a better allocation of variables to registers
than the compiler does. In that case, you can declare variables as shown below.

register int a;
Many compilers ignore the register declaration. If you try to declare more
register variables than there are registers, the compiler selects some of them to be
allocated to registers and the others are treated as ordinary variables.
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Scope within a file
We illustrate the way that scope operates within a file in terms of the program
depicted in Figure 4.5.

a5

Amain

Scope of identifiers for
functionsvariables

}
...

char a5;

char a4;
{

A(a4)
char

float a3;

}

...
int a2;

{
main()

int a1;

a2

a1

fileA

a4

a3

Figure 4.5. Scope within a file
First let us consider the variable identifiers. We show each function and all of its
identifiers inside a box. The walls of the box can be regarded as protecting all the
variable identifiers within it, rendering them invisible to all other functions. So, for
example, the identifier a2 is local to the main function and cannot be accessed by
other functions. Similarly, the identifiers a4 and a5 are local to the function A.
For the purposes of scope, you should think of a formal argument (like a4) as an
identifier local to the function. It may have been initialised with the value of the
actual argument to the function.

Now consider the identifier a1. It is global or external to all of the functions
and so may be used anywhere in this sample program. The identifier a3 is also
declared outside the functions but after the first one. It is visible only to the
functions that appear after it in the file. So, the function A can use a3 but main
cannot.

Now the function identifiers can be regarded as having scope that ranges over
the whole file. However, this does not cover the situation completely. In many
situations, C assumes the type int as the default where the programmer does not
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explicitly state another type. So, in the following code fragment, we need a
forward declaration of do_this.

double ∗do_this();

do_that()
{

double ∗p;
...
p = do_this(’ m’ );

}

double ∗
do_this(a)
double a;
{

double ∗p;
...
p = do_that();

}
Had we omitted the declaration for do_this, the compiler would have assumed that
it returned an int when called in do_that. It would have then complained that we
assigned an int to p, which is a pointer to a double. Since each function accesses
the other, we need a declaration for one of them before the other.

External identifiers
We describe variables like a1 and a3 (in Figure 4.5) as external since this identifier
is external to the functions. All function names are also external. External
variables are like statics in that they exist throughout the life of the program
(unlike autos).

4.5.1  Scope between files
You have already seen some aspects of scope between files in our use of functions
from the standard libraries (page 000). Where we have used int functions like
scanf we could assume that the function name was accessible even though it is in a
separate file from our program. (Standard functions that are not int, need a
declaration only to establish their type.)

In this section, we cover the general rules of identifier scope between files.
First, however, we note that the visibility of an identifier between files is
determined by its storage class , which is one of:

• external
• static
• auto
• register

A variable can be any one of these storage classes and a function identifier can be
either external or static.
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Now we have already seen that auto variables exist only within blocks. So we
have nothing new to say about their scope in multifile programs. Similarly,
register variables must appear within a block.

But, function and variable identifiers that are external or static are the bases
for controlling scope between files. We describe this in terms of Figure 4.6, which
shows a program in two files. We see that an external identifier can be imported by
other files, using an extern declaration, unless we make it static.

Importing variable identifiers
A variable like b1 which is declared in fileB is accessible throughout that file. To
make it available in another file, we need an extern declaration as we have done
with a1. The line

extern int a1;
within the function B1 in fileB imports the identifier a1 into B1. Had we put the
extern declaration at the beginning of fileB (near the declaration of b1), then a1
would have been visible throughout fileB.

In general, extern declarations are a mechanism for importing external
variables from other files. Note that whereas other declarations actually cause
storage of the specified type to be allocated, extern declarations merely define the
type of the variable and enable access to data that is declared elsewhere. So, the
extern declarations for arrays do not need to specify their size (unless they are
multi-dimensional).

In substantial programs there may be many externs that are common to
several files. The usual practice is to put all such declarations in a file with the
suffix .h (such as stdio.h which has definitions used by the standard IO functions).
Then we use the preprocessor’s #include facility to textually include the
declarations into each file that requires them. This is particularly common for the
major data structures of a program. It saves typing and ensures that extern
declarations in each file are always up to date. This applies equally to simple
variables and for aggregate data structures.

You can also write extern declarations for functions and we recommend that
you do this whenever you do declare a (non-int) function. If, for example, we
wanted to use B2 in fileA, we would need to declare it to be of type double and it
is good style to write an extern declaration like this

extern double B1();
which is consistent with the required form for importing variable identifiers.

Hiding identifiers
On the one hand, extern declarations can be used to import variables from other
files. It is also possible to protect against this mechanism. Consider fileB of Figure
4.6. The variable b2 is external to the functions in fileB and can be accessed by
both of them. Because b2 has been declared as static, its scope is limited to fileB
and it cannot be accessed by functions in other files, even using an extern.
Variables that are static, can be thought of as private variables.

Figure 4.6 has another static variable, b3, which is local to the function, B1.
The scope rules make it visible only within that function. That it is static makes
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B2
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extern int a1;
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...
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...
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...
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{

}
...

float a3;
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int a2;

}

b3
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variables

a1

Scope of identifiers for

a3

a5

Figure 4.6
b3 remain unchanged (or retaining its value) between function calls.
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Functions may also be declared static, as we have done with B2. This makes
the function identifier local to the file in which it appears so that it cannot be
invoked by a function that is in a different file. This enables you to create data and
functions that are private to the file containing them. It follows that you should
make the global identifiers in a file static if they are not required in other files.
This maintains the philosophy of keeping identifiers as local as possible.

Data abstraction
Data abstraction involves constructing your own data type, including the allowable
values and operations. Although C does not support data abstraction, you can
achieve something with similar effect by defining a static data structure and a
collection of functions to manipulate it. All the functions that manipulate that data
structure are put in the same file, with all of them declared static unless they define
the allowable operations that you define for your data type. In chapter 5 we provide
an example of creating a symbol table using static declarations in this way to
achieve much of the effect of an abstract data type.

4.5.2  Scope of other identifiers
The preceding discussion has dealt with variable and function identifiers. There are
other types of identifiers:

typedef
#define
labels

These are limited to the file in which they are declared. Since a typedef is merely
a synonym for a type, it is fine to have a separate copy of it in each file as required
(this is usually done with #include). We saw that a3 in fileA of Figure 4.6 is only
accessible to functions that appear after it in the file. The same holds for typedef
and #define identifiers.

Exercises

1. What are the situations where identifiers have default type, int?
2. The library function strcpy copies a string. When you want to use it, you

should declare it as in
extern char ∗strcpy();
char buf[SIZE];
char ∗p;
char ∗q = " arbitrary string" ;
...
p = strcpy(buf, q);

What would happen if the extern declaration line were omitted?
3. The following questions relate to the program depicted in Figure 4.6.

i. How can we make a3 accessible to main?
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ii. How can we make a3 accessible within B2?
iii. What would happen if we added the line

int b1;
at the beginning of fileA?

iv. What would happen if we added the line
int b2;

at the beginning of fileA?
v. What is the effect of

extern char b1;
at the beginning of fileB?

vi. What would happen if you put the line
extern int B2();

in fileA?
4.

i. You cannot make register variables static. Why not?
ii. You cannot use the & operator with register variables. Why not?

iii. Given a function header,
char
fnA(x)
char x;

How do you make the argument a register variable?

Answers

1. A function type defaults to int if there is no type specified in the function
header. Also the arguments default to int if their type is not specified in the
header. An undeclared function from a different file is assumed to be int, as
is a function that is used earlier in the file than its definition. Similarly, a
variable that appears in an extern declaration but has no type specified
defaults to int.

2. This is an error that is detected by the C compiler. If the declaration of
strcpy were omitted, it would take the default type int and the compiler will
not allow you to assign it to p.

3.
i. either move its declaration up before main, or add an extern

declaration there.
ii. Put an extern declaration either in B2 or at the beginning of fileB.
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iii. There would be a loader error because there would be two global
variables called b1.

iv. Because the declaration of b2 in fileB is static, there is no conflict in
this situation. It simply creates a new variable that happens to have the
same name.

v. This has no effect. In fact, it commonly occurs where a program uses
#includes to incorporate all the major extern declarations into several
files of a program including the one where each is actually defined.

vi. You cannot import a static function and the loader will report that it
was unable to link B2.

4.
i. The static storage class is associated with a storage mechanism that

makes data live throughout the execution of a program. A static
register declaration would imply that you wanted to allocate a variable
to the register for the duration of the program. This would tie up a
register and as registers are usually a rather scarce machine resource,
this is not permitted.

ii. The &, address-of, operator can only apply to memory (not to
registers).

iii. Make the header
char
fnA(x)
register char x;

4.6  Storage classes - initialisations
In view of the different storage mechanisms associated with different storage
classes, it is not surprising that initialisations behave differently for each of them.
We use the following declarations to discuss the interaction between storage class
and the allowed forms of initialisations as well as default initialisations. However,
we can warn you that it is better style to make explicit initialisations whenever you
need them (and then you need never worry about which classes have default
initialisations and which do not).
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#define BOUND 100

static int a = 72 ∗ sizeof(int); /∗ constant expression ∗/
int b = BOUND; /∗ constant expression ∗/
extern char x; /∗ cannot be initialised here ∗/
int y; /∗ defaults to zero ∗/
fnA()
{

static int c = BOUND + 7; /∗ constant expression ∗/
int d = a + fnXX(); /∗ any expression ∗/
register int e = b; /∗ any expression ∗/
extern char g; /∗ cannot be initialised ∗/
...

}

Initialisation of auto and register variables
We show d and e initialised to arbitrary expressions. Since the space for these is
allocated each time their block starts executing, it is logical that you can define
their initial value with any expression. As you should expect, this expression is re-
evaluated each time the block is invoked.

If you do not explicitly initialise an auto or register variable, you cannot
predict its initial value. It simply inherits the last value assigned to the location that
it is allocated and failure to initialise such a variable often causes insidious
intermittent errors.

Externs
In the example we have an extern declaration for x which means that its actual
declaration is elsewhere. It only makes sense to initialise a variable once and this
must be at the point of its actual declaration, not in an extern statement.

Statics and external variables
All of these are allocated storage for the duration of the program execution. So,
you can think of their initialisation as happening at compile time and it follows that
they can only be initialised to a constant expression.

The default initialisation for these classes is to zero (or the appropriate type
cast of zero). Even so, it is good style to make explicit initialisations for all
variables whose initial value is critical to the program’s correct behaviour. It
certainly makes your intent clearer and improves the chances that subsequent
modifications to the program will preserve this intention.

Exercise
Lint warns about auto and register variables that appear to be used before they are
set. Why doesn’t it do the same for external and static variables?

Answer
Since external and static variables have a default initialisation (to 0 or the relevant
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cast); lint must assume they are set at the time the program starts execution.

4.7  Compiling and running multifile programs
In chapter 1, we saw how to run simple programs. We now see how to handle
programs that are distributed over several files. It becomes even more important to
use lint to check consistency in function arguments across files and for proper use
of externs. This section shows how to use lint and also how to create your own
libraries.

Figure 4.7 shows the various phases in compiling and loading a C program.
You saw a similar one in chapter 1, but here, we show how the various types of
files fit into the process and their naming conventions.

source code
(name.c)

preprocessor

C compiler

assembler

loader

a.out

assembly code
(name.s)

object code
(name.o)
standard libraries
(libname.a in /lib or /usr/lib)
private libraries
(any name other than the above)

Figure 4.7
As we saw in chapter 1, source filenames must have the suffix .c and, if they are
free of syntax errors, they pass through the preprocessor, the compiler, the
assembler and the loader. Your program can include files of assembly code and
these must have names with the suffix .s. The compilation process generates
intermediate .s and .o files which are normally removed by the end of the complete
compilation. However, if you use the −c flag on the cc command, the object of
each file is stored in a file with a .o suffix. If, for example, you had a program that
was in three files, called doin.c, proc.c and dout.c, you might compile them with
the Unix command
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cc −c doin.c proc.c dout.c
This creates object files called doin.o, proc.o and dout.o. You can then make the
loader create a binary from these using

cc doin.o proc.o dout.o −o process_data
which gives a complete program binary called process_data. Omission of the −o
flag and the file name that follows it, makes for a rather unspecific binary file called
a.out.

If, at some later stage, you decide to modify the code in proc.c, you recreate
the program binary with the Unix commands

cc −c proc.c
cc doin.o proc.o dout.o −o process_data

where the first command recompiles the single file that you have changed and the
second invokes the loader to create the complete program binary. Once you have
created a version of the program that can get past the compiler successfully, you
should use lint to check for the multitude of problems it can find. You use the
UNIX command

lint −hpbaxc doin.c proc.c dout.c
where the flags hpbaxc ensure maximum checking.

Linking standard libraries
As you can see in Figure 4.7, you can link your program to libraries , both public
and private. The C compiler presumes that an undeclared identifier (like scanf) is
a function name and it tries to find the function in the file /lib/libc.a. In the case of
scanf and other functions from the standard I/O library it succeeds and can link the
appropriate functions.

Only the most commonly used functions are kept in /lib/libc.a and for other
functions, like the mathematical functions, you need to explicitly name the library
file to be searched. For example, to compile a file called calc.c that contains a call
to the trigonometric function sin you use

cc calc.c −lm
where the −l flag precedes the name of the library to be searched (in this case, m).
By convention, the loader looks in directories called /lib and /usr/lib for the file
with the prefix lib and suffix .a. (So, in the case of the mathematical library m, the
file is called libm.a.) Libraries are searched in the order you specify to the cc
command. This can pose problems and these are treated in detail in chapter 8 (page
000).

Creating your own libraries
A library is simply a collection of .o files. You use the Unix ar (archive)
command to put them into a single library file. So, for example, we can create a
library containing three files called clear.o, move.o and curve.o using the Unix
command
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ar c drawer.a clear.o move.o curve.o
where we follow the convention that archive files have the suffix .a. If we
subsequently modify move.o, we can replace the old copy of it in the library with
the following command.

ar r drawer.a move.o
Once a library has been created, you can get a list of the constituent .o files with the
t flag as in this command.

ar t drawer.a
Then you can link this library with object files, graph.o and chart.o with this Unix
command.

cc graph.o chart.o drawer.a −o depicter
You can choose any name you like for your own libraries (except that it should not
have the suffixes .c, .s or .o. As Figure 4.7 indicates, the loader assumes any cc
file argument which does not end in .c, .s or .o is one of your private libraries.

Once you are building programs that are large enough to be spread over
several files and that use libraries, you can benefit from using make to help
manage the files and ensure that they are always compiled and maintained
correctly. We discuss make and the management of large programs in chapter 8.

Using lint on multifile programs
We have already mentioned the role of lint in finding incorrect or poor code. It has
checks for type inconsistency including:

• inconsistency between the declared function type and the type of values it
returns (where we view void as a type);

• inconsistency in the use of a function’s return value (including failure to use
the return value of a function like scanf and an attempt to use a function
return value when none was returned);

• inconsistency between actual and formal arguments (where float and double
match, char, short and int match, an array name and a pointer to that array
type match but all other types must match exactly)

It uses various algorithms and heuristic checks to identify problems like:
• unused variable or function identifiers;
• auto or register variables that are not set before they are used;
• unreachable code
• strange type casts
• other strange constructs (like the redefinition of an identifier in an inner

block).
In addition, it does portability checks and identifies superseded forms of syntax.

Balanced against all the good things that lint gives is the fact that it can
produce warnings about programs that work properly. For substantial programs,
we have found it useful to develop a programming style that takes full advantage of
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lint. This means writing code that lint accepts without complaint: it is dangerous to
hope that you can sort through lint warnings, ignoring only the ones that are not
critical.

Exercise
Look in /lib and /usr/lib on your system and see what libraries are there. Explore
them to see what each contains. Try using the man command to get details.

4.8  Functions with a variable number of arguments
This section deals with a machine dependent matter and may be skipped on a first
reading.

You will recall that when a function is invoked, its data requirements are
reserved on the runtime stack. This includes its arguments. The C compiler stores
each of them as one of a small variety of storage sizes. So, for example, a char
argument will generally be stored in a location that is the same size as an int (or a
pointer, whichever is larger). In general, you can ignore this aspect of the
implementation. However, it is important when you want to create functions with a
variable number of arguments.

We use Figure 4.8 to look more closely at how the C compiler handles
function arguments. Figure 4.8 depicts the runtime stack at the point when a
function called fn has just been called. As is common for most C compilers, we
show the function arguments on the stack in reverse order of their appearance in
the argument list and the stack is shown as descending. So, c is stored first and the
first argument, a is the last item put on the runtime stack.

Direction ___________

of Storage
stack for

growth data
↓ of all

active
functions

___________ fn(a, b, c)
c int a;

___________ int *b;
b int c;

___________

a ⇐ top of stack
___________

Figure 4.8. Runtime stack
In terms of this diagram, we can see that the value of the first argument a is stored
at the address &a and that the second argument, b is at the address &b, which is
also &a+1. Now we can use this approach to write a function which, like printf,
can have a variable number of arguments. It starts like this.
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fn(x) /∗ BEWARE : machine dependent ∗/
int x;
{

int ∗p;
...
p = &x; /∗ p is the address of the first argument ∗/

We only define one argument because we do not know how many there really will
be on any particular call. But we do know that x will always be at the top of the
stack. Now, just as we reach b in Figure 4.8 by doing arithmetic on the address of
a, so we can access a second argument to fn as ∗(p+1) and a third as ∗(p+2) and so
on.

In the case of printf and scanf, the first argument provides the information
needed to determine the number of arguments that follow. (The format string in the
first argument allows printf and scanf to work out how many arguments should
follow and what types they have.) Another strategy is to require that the last of the
actual arguments have some sentinel value. (The standard execl function uses this
approach, with a zero as the sentinel value.)

Although this approach is typical of many C compilers, you need to check the
exact mechanism for your compiler. You should also investigate whether there is a
function on your system for handling variable numbers of arguments (we describe
some on page 000 of chapter 7). Certainly, it is good practice to separate this sort
of function and clearly document it to indicate that it may pose portability
problems.

4.9  Perspectives
A number of the language aspects we have described in this chapter reflect C’s
history. We now discuss them.

There is a general trend towards safer C compilers with tighter function
interfaces. Whereas older compilers permit the functions in one file to use the
variables in other files without explicit extern declarations, newer compilers
enforce the scope that we have described in this chapter.

You may have wondered why char and short arguments and function return
values are promoted to int (and similarly float to double). One very practical
reason is that a single library function can service all the types that promote to its
type.

By this stage you may also be surprised that so many important checks on
source code are done by lint rather than the compiler. Pascal programmers will be
accustomed to getting much more help from the compiler in finding errors. Some of
the differences follow from the fact that C supports separate compilation.
Certainly, the checks that run across files cannot be done by the compiler when it
only has access to some of the files in a program. Even so, many other lint checks
could be done by the compiler. For example, consider an heuristic check like
finding variables that are used before they have been given a value. This can only
be approximate and such checks can be very resource intensive to perform. So
there is an argument based on efficiency for separating the functions of a compiler
and a source code checker. A second reason is based on history and the tools
philosophy which advocates separation of different functions into different
programs. An interesting side effect of the separation between the compiler and lint
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is that lint is very standard across all systems, whereas the compiler may be
different.

4.10  Summary
A program is a collection of variable declarations and functions. It can explicitly
return an exit code; the default value returned by programs that complete normally
is 0.

A function has a
• header of the form

 type (can be void or any type except array, default is int)
 function identifier
 argument list
 argument declarations (can be any type other than array - can be a pointer to

data of any type, including array or function. For arguments and function
return values, char and short are promoted to int, float to double)

• body (block) braces enclosing declarations and statements including zero or
more return statements

Scope of an identifier can be limited to
• a block
• a function
• a file
• several files

Storage classes for variables are
• extern
• static
• auto
• register

Initialisations of auto and register variables can be any expression; other storage
classes can only be initialised to a constant expression.

There is no default initialisation for auto and register variables; other storage
classes are initialised to zero or the relevant cast of zero.

Function identifiers are all external but
• can be restricted to one file using a static declaration.
• require an extern declaration to ensure that their correct type is conveyed

across file boundaries.
External identifiers can be imported to a file with an extern statement.
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We have seen the cc command
• with the −c flag to create object files from .c files
• with the −o flag to specify the name of the executable binary file
• to load object files (.o) and library files (.a)
• with the −l flag to specify libraries to be searched.

and after compiling programs you should use lint.
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Aggregate Data Types

The simple data types were treated in Chapter 3 and now we see how to construct
aggregate data structures:

• structures for collections of related data of any type;
• arrays for collections of data, all of the same type;
• strings for character sequences;
• bitfields for representing bit data and
• combinations of these.

We also show how to deal with arguments on the program command line. The
treatment of arrays emphasises the pointer based view of an array. One of the
striking aspects of C programming idiom is the heavy use of pointers to access
aggregate data structures, especially in the case of strings and arrays.

5.1  Introduction
In Chapter 1 we made simple uses of arrays. In this chapter we introduce the other
aggregate types, the struct (which is like Pascal’s record), the union (which is like
Pascal’s variant record) and bitfields, which look similar to a structure component
and are useful for data that is viewed as a collection of bits.

We start with a simple treatment of structures, then arrays and strings. From
there, we discuss unions and bitfields and the more interesting and useful
applications of various combinations of the aggregate data types. These include
arrays of structures and structures containing arrays, strings, other structures and
pointers to other types. We also show how to use information hiding to get some of
the benefits of data abstraction.

Although C permits you to deal with a whole structure as one entity, in
assignments, function arguments and return values, this is not the case with arrays.
Arrays are consistently viewed as a sequence of items, each of the same type, with
the array name being best viewed as a constant pointer to the zeroth element in the
array.

We also see idiomatic code for manipulating an array in terms of pointers. To
date we have used arrays in much the same way as they are used in Pascal but here
you see how C’s arrays are very closely related to pointers and are commonly
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manipulated by pointers. The philosophical differences between Pascal and C also
show strikingly in the fact that C does not check for out of bounds array accesses.

Strings in C are rather like those in Pascal in that they are arrays of characters.
However, C has the convention that a string ends with the ASCII NUL character,
\0, and the standard libraries provide a stock of functions that perform many useful
string operations.

5.2  Structures
There are many situations where a program needs a data structure which is a
collection of related elements, that may be of different types. In C, we call these
structures and the components of a structure are called members or fields . A
structure member can be any simple or aggregate type.

We now introduce an example of a simple structure that we use throughout
this section. Consider the following declaration for representing a date.
enum day_name
{

Sun, Mon, Tue, Wed, Thu, Fri, Sat, day_undef
};
enum month_name
{

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec, month_undef

};
struct date
{

enum day_name day;
int day_num;
enum month_name month;
int year;

} Big_day =
{

Mon, 7, Jan, 1980
};

struct date moonlanding;
struct date deadline = {day_undef, 1, Jan, 2000};
struct date ∗completion;
The struct date has four components, two of which are ints and the others are
enum types, day_name and month_name. The identifier date is called a tag .
The last declaration, for completion, is an example of a pointer to a structure.

You may use the same field identifier in different structures. So the
declarations above can co-exist with ones like this
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struct car_desc
{

enum car_cols colour;
enum car_make make;
int year;

};
where we have reused the identifier year.

5.2.1  Declaration and initialisation
When we declared the Big_day structure, we combined the definition of the struct
day with the declaration for Big_day. The other declarations, for moonlanding,
deadline and completion use the existing definition of date. In general, it is
better to separate the structure definition and declarations so that you can place
each independently in your program text. The general form of a structure definition
is

struct [tag]
{

member-declarations
} [identifier-list] ;

and once a tag has been defined, data can be declared using this form.
struct tag identifier-list ;

The declarations for Big_day and deadline also illustrate some structure
initialisations. That we have initialised them indicates that they must be external or
static because you cannot initialise auto data structures in the declaration line:
these must be explicitly initialised with assignment statements.

The typedef that was introduced in Chapter 3 is widely used to create a
synonym for a structure. For example, we might create a Date typedef thus:
typedef struct date
{

enum day_name day;
int day_num;
enum month_name month;
int year;

} Date;
and then we could have declared the structures thus:
Date Big_day = {Mon, 7, Jan, 1980};
Date moonlanding;
Date deadline = {day_undef, 1, Jan, 2000};
Date ∗completion;
This not only saves some typing but it can make programs clearer.

5.2.2  Structure accesses
There are two structure access operators, dot (.) to access a field within a structure
and −> which gives a shorthand for accessing a field when you have a pointer to the
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structure. Simple accesses to our date structures might look like this
moonlanding.day_num = 19;
scanf(" %d" , &(moonlanding.year));

completion = &deadline;
deadline.year++;
deadline.month = Oct;

where the dot operator appears between the structure name and the component
name. The last three lines could equally well have been written thus

completion = &deadline;
(∗completion).year++;
(∗completion).month = Oct;

where the brackets are needed because the dot operator has higher precedence than
∗.

In practice, it is very common to access structure members using a pointer to a
structure. The −> makes this easier. It enables you to write the above code more
simply like this.

completion = &deadline;
completion −> year++;
completion −> month = Oct;

Both structure operators have the same precedence, which is higher than any of the
operators discussed in Chapter 3. Both are evaluated left to right.

Exercises
Given the declarations

struct A
{ int a;

int ∗b;
int c[10];

};
struct A x;
struct A ∗p;

what does each of the following expressions do?
i. (∗p).a

ii. ∗p.b
iii. p−>c[0]
iv. x = ∗p

Answers

i. Since dot has higher precedence than ∗, we need the brackets so that this
expression takes the value of the member a of the structure that p points to.
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ii. By contrast, ∗p.b is equivalent to ∗(p.b) which is meaningless and may cause
an error message.

iii. This accesses the zeroth element of the member c in the structure pointed to
be p. This form saves you thinking about the relative precedence of ∗ and
dot.

iv. This assigns the structure that p points to, to x. This means that the whole
structure is assigned, including the member that happens to be an array
(though you cannot assign a whole array directly.)

5.2.3  Structures as function arguments and return values
Since a structure can be treated as a single entity, you can write code like this

struct mine s1;
struct yours s2;
struct mine doit();

s1 = doit(s2);
where the function doit takes a structure s2 as its argument and returns a structure
which is assigned to s1. The outline for doit might look like this.

struct mine
doit(ds)
struct yours ds;
{

struct mine temp_str;
...
return temp_str;

}

5.2.4  Standard structures
In any substantial program, it is usual to define a set of structures for use in several
files. By convention, these are kept with other shared declarations in a file with the
suffix .h. (The h is for header.)

We have already seen some standard .h files, including stdio.h. In addition,
there are several useful structures defined in Unix systems. For example, tm holds
a time with date and time of day and is defined in time.h. The file information
structure called statb is defined in stat.h and passwd which contains password
information for a user and is defined in pwd.h. Chapter 7 deals with their use.

There are many other standard structures that are defined for particular
systems. For any application, you should try to seek out such structures so that
your programs can deal with data in a standard way. For example, most systems
have standard structures for I/O device control. (We discuss some of these in
chapter 7.)

5.3  Arrays
You can define arrays over any C type, including enums, pointers and any
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aggregate type.
C arrays are tightly linked to pointers. Indeed, the array name is actually a

constant pointer to the zeroth element of the array and C programmers commonly
access an array element using pointer arithmetic. This is illustrated in Figure 5.1.

. . . . . . . . . . . . . . . . .

.........

.......

.......

*(A+n)A[n]

*(A+1)A[1]

*AA[0]

pointer viewarray view

.........

Figure 5.1. Two views of an array called A
In some respects the C view of an array is very close to the machine
implementation: it is equally valid to view the array as a name with an index or as
a constant pointer to the place in memory where the array begins with the facility to
do pointer arithmetic to take an appropriate offset. This is why C arrays start with
the index zero.

There is a sense in which C’s support of pointer arithmetic allows a high level
view of an array. Even if As elements are a complex data type, the pointer
arithmetic shown on the right of Figure 5.1 gives the same address as the
corresponding index form.

Since you cannot have arrays as function arguments or return values, you need
to use the pointer view of an array in those cases. In all, pointers are very heavily
used with C arrays.

5.3.1  Declaration and initialisation
We can initialise static and external arrays (but not auto arrays) as in this
declaration,

int A[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
where we initialise all the elements in A to one. Unfortunately, there is no
shorthand form of this initialisation and had the array been much bigger, it would
have been simpler to write a loop that set all the elements to one.

If you provide an initialisation list that has too few elements, the remaining
elements are set to zero (or the equivalent cast). So you can abbreviate

int tally[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
to
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int tally[10] = {0};
and since all external and static data has a default initialisation to zero (or the
relevant cast) these are also equivalent to the following declaration.

int tally[10];
The first of these forms is the clearest and it to be preferred when you need to rely
on an initial value of zero. (Of course, auto variables cannot be initialised in the
declaration line and they have no default initialisation to zero.)

We can also declare and initialise an external or static array like this
int starters[ ] = {1, 2, 3, 4, 5, 6};
int Starter_size = sizeof starters / sizeof (int);

where we do not specify the number of elements. The compiler makes the array
large enough to hold all the elements listed in the initialisation. In the second line
of code we establish the number of elements in starters. This form is portable and
it ensures that Starter_size has the correct value even if you change the number of
elements in the array (or if you cannot count accurately).

The general form of an array declaration is
type array-name[[size]] [= { value, ... }];

where the initialisation is allowed only for static and external variables.

5.3.2  Array accesses
The array index operator [ ] has the same precedence as the structure operators, dot
and −>. Its action is best described in terms of the pointer model of an array, where

y[i] is equivalent to ∗(y + i)
and y is a constant pointer with the address of the zeroth element in the array. So,
given the following declarations,
int A[N];
int ∗pa = &A[0];

struct date B[N];
struct date ∗pb = &B[0];
you can refer to the zeroth element of the array A as any of

A[0]
∗pa
∗A

and the zeroth element of B with the corresponding forms. To access the j-th
element of each array you can use any of the three forms

A[j]
∗(pa + j)
∗(A + j)

and
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B[j]
∗(pb + j)
∗(B + j)

which works correctly because pointer arithmetic is always done in terms of the
data type involved. If, for example sizeof date were 27, the addition of j to p
would actually involve adding 27 ∗ j to p. The general form of an array access is

array-name[index-expression]
or
∗(array-name + offset)

and array-name acts as a constant pointer.

Exercises

1. Given the following declarations,
char ∗s;
char line[100];
char ∗doit();

which of the following operations make sense and what do they do?
i. s = line;

ii. s ++;
iii. line ++;
iv. s += 7;
v. &line[0];

vi. ∗line
vii. &(line[1]) − 1;

viii. doit(&line[7]);
2. Look back at page 000 where we discussed the way the runtime stack

operates. Our treatment works for int arguments. However, had the function
declaration been
fn(a, b, c)
char a;
int b;
int c;
how can we access b in terms of a which is at the top of the stack?

Answers

1.
i. s = line is acceptable and sets s to the beginning of the array, line.

Equally, you may see this as setting s to the same value as the constant
pointer, line, that points to the beginning of the 100 element array.
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ii. s ++ moves s to point to the next element in the array.
iii. line ++ is illegal as it tries to alter the value of a constant pointer, line.
iv. s += 7 is acceptable. It makes s point to the array element 7 along. So,

if it was pointing at s[0], it now points to s[7]. This is one way to deal
with subarrays.

v. This is just another form for line.
vi. This is equivalent to line[0].

vii. This is another form for the address of line[0].
viii. This is a way of passing a subarray as a function argument.

2. The form on page 000 is &a+1 but this is just one byte on from &a. We need
to use ((int *)&a)+1 since a is a char. When it is passed as an argument it is
promoted to an int.

5.3.3  Out of bounds array accesses
C does not check that array accesses are within the array bounds. So, in code like
this

int A[100];
...
A[n] = 77;
...

it is your responsibility to ensure that n is in the range zero to ninety-nine.
Otherwise, your program will access some arbitrary piece of memory. The
resulting errors can be exceedingly difficult to find (and this is a place where lint
cannot help).

One way to protect against this problem is illustrated below
#include <assert.h> /∗ contains relevant macro definition ∗/

...
int A[100];
...
assert((n >= 0) && (n < 100));
A[n] = 77;
...

where the library function, assert, checks the value of the index n and prints an
error message if it is out of range. It must be admitted that C programmers tend to
make rather little use of assert but we hope that this will change. We certainly
recommend the use of assertions to improve the reliability of your code. For those
situations where efficiency is critical, the assert can be made subject to conditional
compilation (using the preprocessor’ facilities).

The other approach is to use debugging tools to find bugs due to array
accesses being out of bounds. We discuss the use of one such debugger, sdb (for
symbolic debugger) in Chapter 8.
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5.3.4  Multi-dimensional arrays
It is not common to use a multi-dimensional array in C. The language idiom
favours an array of pointers or a linked list. Nevertheless, let us consider a very
simple function that calculates the sum of two matrices, A and B each with three
rows and five columns.
void
sum()
{

int i;
int j;

for (i = 0; i < 3; i++)
for (j = 0; j < 5; j++)

AplusB[i] [ j] = A[i] [ j] + B[i] [ j] ;
}
To use this function, we could declare A like this
int A[3] [5] =

{ { 1, 0, 0, 0, 1 },
{ 1, 1, 1, 1, 1 },
{ 0, 0, 1, 0, 1 }

};
where the initialisation shows A as an array of row arrays, with each row
initialisation expressed as a separate vector initialisation. The following
initialisation for B shows another acceptable form where the two dimensional array
is viewed as a vector or 1-dimensional array.
int B[3] [5] =

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
Arrays are stored by rows, so that the first five elements of B are its first row of
elements (the row with index 0). There is no limit on the number of array
dimensions and the array is stored with the last array index changing fastest.

Exercise

1. Assuming the above declaration for B, what is the value of
B[2] [0]
∗B[2]
B[2]

2. Given the declarations
float x[a] [b];
float y[c] [d] [e];
int i, j, k;

give the pointer form for
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x[i] [ j]
y[i] [ j] [k]

Answers

1.
B[2][0] has the value 11.
∗B[2] has the value 11.
B[2] gives a compiler warning and is a pointer to
the element with value 11.

2.
∗(x + b ∗ i + j)
∗(y + d ∗ e ∗ i + e ∗ j + k)

5.3.5  Array pointers as function arguments and return values
Unlike some programming languages, C does not permit the manipulation of whole
arrays in single operations. This means that you must use a loop to do tasks like
adding a constant to each element in array, multiplying the elements of two arrays,
reading and printing a whole array. Of course, if you need to do a lot of these
operations, you can build libraries of functions to do them. Indeed, C provides a
collection of functions for manipulating strings, which are a particular class of
array.

You can give a function access to all the elements of an array by passing a
pointer to the array. We illustrate this in a revised form of the matrix addition
function which accepts pointers to arbitrary arrays of the correct size and returns a
pointer to their sum. This means that each time sum runs it must allocate the
storage needed for the matrix sum as shown below.
int ∗
sum(A, B)
int A[ ] [5];
int B[ ] [5];
{

int ∗result;
int i;
int j;

result = (int ∗)malloc(sizeof(int) ∗ 3 ∗ 5);

for (i = 0; i < 3; i++)
for (j = 0; j < 5; j++)

result[ i ∗ 5 + j ] = A[i] [ j] + B[i] [ j] ;
return result;

}
We declare the function as int ∗ and we have a result of the same type. The first
action of the function is to call malloc to allocate space for a 3 by 5 array for the
matrix sum. This is the first of many uses we make of malloc, a function that
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allocates space at runtime. Its argument specifies the amount of space to be
allocated and it normally returns a pointer to the first location in the allocated
memory. It can fail if there is not enough memory available to satisfy the request
and, in that case, it returns the value (char ∗)0. In general, we should make it a
policy to check this and on page 000 we show you the usual way to do this. For
now, we assume that malloc succeeds.

The central loop of the function is as in the earlier version. Note that the
declarations for the formal arguments follow a common C convention in that we
omit the size of the first index. As you can see from the last set of exercises, the
compiler does not need the size of that dimension of the array to compute array
indexes. (And since it does not check for out of bounds array accesses, it makes no
use of the first dimension when you do provide it.)

5.3.6  Variable dimension arrays
Since we use a pointer to an array for function arguments, it is straightforward to
write a function that can manipulate an array of any size. Our sum function is
much more useful if we generalise it as shown below.
int ∗
sum(A, B, rows, columns)
int ∗A;
int ∗B;
int rows;
int columns;
{

int ∗result;
int i;
int j;

result = (int ∗)malloc(sizeof(int) ∗ rows ∗ columns);

for (i = 0; i < rows; i++)
for (j = 0; j < columns; j++)

result[ i ∗ columns + j ] = A[i ∗ columns + j ] + B[i ∗ columns + j ] ;

return result;
}
This version of sum needs the arguments rows and columns that define the actual
size of the arrays. It uses these in the call to malloc, to control the loops and in the
array index calculations.

Exercises
What do each of the following declarations mean?
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int ∗A;
int ∗∗A;
int ∗B[N];
int C[N];
int ∗D();
int (∗E)();
int ∗(∗F)();
int ∗(∗G[N])();

Answers
int ∗A is a pointer to an integer.

int ∗∗A is a pointer to a pointer to an integer.

int ∗B[N] is an array of N pointers to integers.

int C[N] is an array of integers.

int ∗D() is a function returning a pointer to an integer.

int (∗E)() is a pointer to a function returning an integer.

int ∗(∗F)() is a pointer to a function returning a pointer to an integer.

int ∗(∗G[N])() is an array of N pointers to functions returning pointers to integers.

5.4  Dynamic storage allocation
We have met four classes of data: external, static, auto and register. Each has an
associated storage mechanism which defines its scope rules, duration and the forms
allowed for initialisations. The standard functions, malloc and realloc use yet
another storage mechanism, the heap , which is memory that can by dynamically
allocated at runtime and is accessed using pointers. (Of course, the pointers
themselves can be stored by any of the mechanisms.)

We illustrate the way that the heap operates in terms of the following code
segment.
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main()
{

char ∗y;
char ∗z = " arbitrary string" ;
char A[4];
...
y = " this is a constant string" ;
...
y = malloc(200);
...
free(y);
y = malloc(20);
...

}
Now the data declared in main is stored in the stack. So the pointers y and z and
the array A are stored on the stack. In addition to the data on the stack, the constant
strings are stored in a persistent memory area (just like external and static data.)
The compiler generates code that allocates storage for constant strings and also
initialises it. At the point where main does the assignment

y = " this is a constant string" ;
all that actually happens is that y takes the value of the address of the first letter in
the constant string.

You can also allocate and deallocate heap memory using the standard
functions, malloc, realloc and free. We do this later in main with the statement

y = malloc(200);
where malloc allocates space for 200 characters on the heap. After using this
space, we use free to make that space available for reuse in future calls to malloc.
It is quite possible that the 20 locations allocated on our second call to malloc may
reuse some of the 200 that were allocated on the first call. Since malloc does not
initialise the memory it allocates, you cannot rely on its initial value.

As we have noted, malloc returns the value (char ∗)0 if there is not enough
memory available. Since you should check for this whenever you use malloc or
realloc, we prefer to use our own functions salloc and srealloc which call the
standard functions (malloc and realloc), check the return value and when it is
(char *)0 they print an error message and exit (with an error code set). High
quality software should use functions like salloc and srealloc and we use them in
the remainder of this book. (We give code for these later.)

We summarise the different memory mechanisms in Figure 5.2.
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volatile

Figure 5.2. Different memory mechanisms
Now the external and static forms exist throughout the program’s execution, which
means that an identifier is associated with the same storage throughout the program
execution. We also classify the heap as a persistent form of storage because the
same locations are allocated from the time of the malloc call until the storage is
explicitly freed by the programmer (using a call to free or realloc) or the program
completes.

By contrast, the stack grows as each function is invoked and shrinks as it
completes execution. Finally, the register data exists only while the function in
which it is declared remains active and the same registers are also heavily used by
the code otherwise generated by the compiler.

Exercise
After the call to free, y is not set to NULL. Why is this so? What problems can it
pose?

Answer
Free cannot affect y because arguments are called by value and cannot be altered
by the function. Logically, you should not use y once the memory it points to has
been freed. Problems can arise if you do use freed memory, particularly if it is
reallocated in a later call to malloc.

5.5  Strings
Conceptually, a C string is a sequence of zero or more characters from the ASCII
character set. In fact, as a C programmer you cannot take such a pure view of them.
You have to appreciate that they are implemented as a sequence of memory
locations with a special sentinel value ’\0’ (ASCII NUL) that marks the end of the
string. This means that all strings are arrays but an array of characters only
represents a string if its contents is terminated by a NUL.
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It is usual to view a string as a pointer to a sequence of zero or more characters
as in the example below which shows a function that accepts a string and strips any
trailing white space characters.
/∗ function that strips trailing white space from a string ∗/
char ∗
Detrail(s)
char ∗s;
{

char ∗p;
char ∗last; /∗ the last non−blank ∗/

last = s − 1;
for (p = s; ∗p != ’ \0’ ; p++)

if (!isspace(∗p))
last = p;

∗++last = ’ \0’ ;
return s;

}
We have used pointers to access the string. The for loop control line has a stopping
condition that tests each character against \0, a very common form in string
handling programs. Observe also that we increment the pointer p on each loop
iteration. Once the loop has set last to be the last non-blank, we increment last and
put a \0 in that position to mark the end of the string. This action may overwrite a
blank character or, in the case where the function is called with a string that had no
trailing blanks, the final assignment simply overwrites the \0 again.

Exercise
The Detrail function above deals with a string as a pointer to a character sequence.
Rewrite it to treat its argument as an array of characters.

Answer
Although this code is very similar to the pointer form, C idiom favours the pointer
form and, in general the pointer view gives more natural and elegant code.
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char ∗
Array_Detrail(s)
char s[ ];
{

int last; /∗ index of last non−blank in array ∗/
int j;

last = −1;
for (j=0; s[j] != ’ \0’ ; j++)

if (!isspace(s[j]))
last = j;

s[++last] = ’ \0’ ;
return s;

}

5.5.1  Declaration and initialisation
Since strings are essentially character arrays, there is nothing new about string
declarations. However, string initialisations are different in that there is a
shorthand form, as illustrated in the following declaration of a string containing the
vowels.

char ∗vowels = " aeiou" ;
Strings that are declared as char ∗ can always be initialised. Even auto strings of
this sort can be initialised where arrays cannot. This is because an auto string has
only its pointer on the run-time stack and the actual constant string is allocated
space in persistent memory.

Exercises

1. How do the two following declarations differ?
char specials[ ] = { " !" , " ?" , " :" , " ;" };
char ∗caps = " ABCD" ;

2. What does this code do?
int n;
char c;
...
c = " 0123456789abcdef" [n];

Answers

1. The first declares an array of characters, the second a string. (The compiler
puts a \0 after the D.) So the first cannot be used for an auto array. We can
alter caps like this

caps = " EFGH" ;
later in the program. This form is not allowed for specials. The effect of
the assignment to caps is to change the value of a single pointer so that it
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points to a different constant string "EFGH".
2. It converts a number in the range zero to fifteen to the appropriate

hexadecimal character. Here we have chosen to define a constant string and
then, viewing this as a character array, we index into it to find the n-th
element.

5.5.2  Standard functions for manipulating strings
Strictly speaking, C provides little support for strings as you have to write code in
terms of either the pointer to a sequence of characters model or the array of char
view. However, the standard library functions do support a range of typical string
operations, including

• formatted input from standard input using scanf or from other files, using
fscanf, output to standard output using printf or for other files, using fprintf

• unformatted input using fgets and output using fputs
• formatted movement of strings within memory, using sscanf and sprintf
• interpreting a string as an integer, with atoi, a floating point number with atof

and a long int using atol.
• string searches using strchr and strrchr
• string copying using strcpy and strncpy
• lexicographical string comparisons with strcmp and strncmp
• determining string length with strlen
• concatenating strings with strcat and strncat
• create space for strings using malloc, realloc and calloc.

This is not an exhaustive list: the complete set is treated in Chapter 7 starting on
page 000. Other useful operations, including trimming strings, deleting parts of
them and using substrings are easily implemented.

We illustrate some uses of string handling functions with a program that reads
a line of any length, allocating precisely the right amount of storage for it. But first,
consider the following code segment that reads one line of characters from standard
input.
#define N 256

...
char line[N];
...
fgets(line, N, stdin);

The fgets function reads up to an end of line (\n) or N − 1 characters, whichever
comes first. It also puts a \0 at the end of the string it returns. The usual way to use
fgets is with N set large enough to safely accept any likely line of input. Although
fgets is often adequate, you may need to read a line of any length and store it as a
string which uses just the minimum storage. In that case you need a function like
Get_line below. This uses salloc, a safer version of the standard function malloc.
(It checks the value that malloc returns.) The first call to salloc returns a pointer to
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extern char ∗salloc(); /∗ safe storage allocator ∗/
extern char ∗srealloc(); /∗ safe storage reallocator ∗/

#define N 10

char ∗
Get_line()
{

char ∗line; /∗ pointer to the complete line ∗/
char ∗cp; /∗ pointer to last character put into the string ∗/
unsigned size; /∗ current size of string buffer ∗/
unsigned count; /∗ count of characters read so far ∗/
int c;

size = N;
line = salloc(size); /∗ allocate N bytes initially for line ∗/
cp = line;
for (count = 0; (c = getchar()) != ’ \n’ ; count++)
{

if (c == EOF)
return NULL;

if (count >= (size − 1))
{

line = srealloc(line, size += N); /∗ allow N more chars ∗/
cp = line + count; /∗ restore cp ∗/

}
∗cp++ = c;

}
∗cp = ’ \0’ ;
count++;
return srealloc(line, count); /∗ return the correct sized string ∗/

}
a memory space N characters long. If that is insufficient we invoke srealloc which
allocates space N characters bigger and ensures that the characters that were in line
are also present in the bigger string. The srealloc function returns a pointer to an
area of memory that contains the old contents of its first argument but with room
for the number of characters specified by the second argument. Often, this pointer
accesses a different physical memory area and in that case, srealloc has to copy the
old line string to that new location. This means that we can no longer use any
pointers that we had set up to access parts of line before the call to srealloc.
Indeed, as you can see, we have redefined the pointer cp in terms of the re-allocated
line.

After we have read the whole line, we use srealloc again, to get a string that is
just the right size for the line, and this is returned by Get_line.

5.5.3  Strings as function arguments and return values
Strings are handled in the same way as other arrays when they are function
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arguments or return values: they are declared as char ∗, a pointer to a character.
For example, Get_line returns a string and it uses two such functions, salloc and
srealloc. We now show you srealloc to illustrate the use of a string as a function
argument.
#include <stdio.h>

char ∗realloc();

char ∗
srealloc(ptr, size)
char ∗ptr; /∗ pointer to the block to be changed in size ∗/
unsigned size; /∗ new size of block ∗/
{

char ∗result;

if ((result = realloc(ptr, size)) == (char ∗)0)
{

fprintf(stderr, " cannot realloc, size = %d \n" , size);
exit(1);

}

return result;
}
As you can see, srealloc simply calls the standard function realloc and checks the
value that it returns. When realloc returns the value (char ∗) 0 it means that it is
unable to allocate the space requested (which usually means that the program has
run out of memory).

Exercises

1. Given the declaration,
char ∗Bad_Data_Mess = " \tWARNING \n \tBad Data on Input" ;

what does the following print?
printf(" %s" , Bad_Data_Mess);
printf(" %c" , Bad_Data_Mess[4]);
printf(" %c" , Bad_Data_Mess[39]);

2. Suppose we have two string declared thus.
char s1[20];
char s2[20] = " Hello there" ;

Can you set s1 to be the string "Hello there" in one assignment operation?

Can you assign the whole of s1 to s2 in a single assignment operation?
3. What does the following call to printf do?
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fstr = Get_line();
...
printf(fstr, a, b, c);

4. Write the salloc function (read about malloc on page 000).
5. What is the difference between a and "a"?
6. Read and store a piece of text using an array of strings (an array of pointers to

characters) where each string is just the right size for the line it holds.

Answers

1. The first line would simply print the message directly as
WARNING
Bad data on input

and the second would print from the 5-th character in the string, which is N.
The last line is an out of bounds array access and its effect is unpredictable.

2. No, you cannot assign a whole array or string. So you cannot write
s1 = " Hello there" ; /∗WRONG ∗/

and because s1 and s2 are constant pointers, you cannot write
s1 = s2; /∗WRONG ∗/

Note, however, that the following form is fine.
char ∗m1;
char ∗m2 = " Hello there" ;
...
m1 = m2;

and you can use strcpy like this.
char ∗strcpy();
char s1[20];
char s2[20] = " Hello there" ;
...

(void) strcpy(s1, s2);
3. The values of a, b and c are printed according to the format that was read by

Get_line. This enables you to do runtime formatting; in this case we read
the formatting string.

4. This is very similar to srealloc.
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char ∗
salloc(size)
unsigned size;
{

char ∗result;

if ((result = malloc(size)) == (char ∗)0)
{

fprintf(stderr," cannot malloc %d bytes \n" , size);
exit(1);

}
return result;

}
5. a is a single byte of storage containing the character a, "a" is a pointer to two

bytes of storage containing the characters a and \0.
6.

#include <stdio.h>

#define MAXLINES 20

extern char ∗Get_line();
char ∗lines[MAXLINES];
void read_lines();

...
read_lines(lines, MAXLINES);
...

void
read_lines(l, num)
char ∗∗l;
int num; /∗ maximum number of lines to read ∗/
{

while ((∗l++ = Get_line()) != NULL)
if (−−num == 0)

return;
}

5.6  Program argument processing
Under Unix, a C program can access arguments from the Unix command line. We
illustrate this in the next program, which prints its arguments. The programs in this
section also demonstrate idiomatic code for manipulating strings.

Given the program binary called printargs, the command line
printargs one "∗two∗" three

gives the following output.
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argument 0: printargs
argument 1: one
argument 2: *two*
argument 3: three

The zeroth command line argument is always the name of the program. By
convention, main is always supplied with the following:

• argc, the number of command line arguments with which the program was
invoked,

• argv, an array (or vector) of pointers to strings, one for each of the arguments
that appeared on the command line and

• envp, a pointer to information about the program’s environment (described in
Chapter 7).

So we can print the command line arguments like this.
main(argc, argv, envp)
int argc; /∗ number of arguments, including program’ s name ∗/
char ∗argv[ ]; /∗ array of pointers to the argument strings ∗/
char ∗∗envp; /∗ pointer to a sequence of pointers to

information about the program environment ∗/
{

int i;

for (i=0; i < argc; i++)
printf(" argument %d: %s \n" , i, argv[i]);

}
A more useful and sophisticated use of the command arguments is shown in the
next code fragment which extracts the program name, excluding the full path name
as necessary. So, for example, a program contained in a file called doit that resides
in a directory called /usr/kim might equally well be invoked as either
doit
or
/usr/kim/doit
and the following code extracts the filename, doit in either case.

char ∗prog_name; /∗ pointer to filename ∗/

if ((prog_name = strrchr(argv[0], ’ /’ )) == (char ∗)0)
prog_name = argv[0];

else
prog_name++;

The first line uses strrchr to scan backwards through the zeroth program argument
string for the first occurrence of a slash. If none is found, strrchr returns (char ∗)0
and we need simply to set prog_name to the zeroth argument. However, if a
pathname was specified in the command line that started the program, strrchr
returns a pointer to the last slash in that pathname. So, to make prog_name the
actual filename, we need to increment that pointer (making it the first character past
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the slash).
Note that this example also illustrates the use of a substring , as prog_name is

a string with just the required part of the complete string argv[0]. In general, you
can set a pointer to any character within a string so that the characters from that
point to the terminating \0 constitute a substring.

Exercise
Some C programs may declare the argument vector like this.

char ∗∗argv;
Rewrite the code samples of this section to match this definition.

Answer
The declaration treats argv as a pointer to a pointer to a string. Since [ ] is an
operator, we could still use the same code. However, code that maintains a view
that is consistent with the declaration would look like this.

int i;
char ∗∗next;

next = argv;
for (i = 0; i < argc; i++)

printf(" argument %d: %s \n" , i, ∗next++);
The code that prints the name of the program would become

if ((prog_name = strrchr(∗argv, ’ /’ )) == (char ∗)0)
prog_name = ∗argv;

else
prog_name++;

5.7  Combining arrays, strings and structures
In typical programs, you need to combine arrays and structures in more complex
forms than we have shown so far. Consider the following declaration for a
structure that a library catalogue might need to keep for the information about a
library book.

First, we have a typedef for the structure that holds the information about an
individual book.
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enum lib {childrens, central, reference, stack};
typedef struct
{

char ∗title; /∗ Book’ s title ∗/
char ∗author; /∗ Author(s) or Editor(s) ∗/
char ∗classification; /∗ Dewey or F code ∗/
enum lib heldin; /∗ Sub−library of holding ∗/
int quantity; /∗ Number of copies held ∗/

} Book_Info;

Book_info Ubook =
{

" The UNIX System" ,
" S. Bourne" ,
" FBou 32" ,
central,
7

};

Book_info Abook;
Book_info ∗bookptr;
Here we have defined a structure with five components and we have established the
synonym Book_info for that structure. We have declared two structures of this
type Ubook and Abook and bookptr is a pointer to a Book_info structure, We
have also initialised Ubook (which is only allowed for external and static data).

We can establish a title like this
Abook.title = " Introduction to Data Structures" ;

If you do not know the string at compile time, you have to allocate storage for it at
runtime, as we did in the Get_line function. Indeed, you can use Get_line (on
page 000) to allocate storage for strings within a structure as in the following
example that reads the title of a book from input.

if ((Abook.title = Get_line()) != NULL)
... ;

where we check whether Get_line reached an end of file.
Since a library has a large number of books, we might decide to store the

information about the whole catalogue as an array of structures like this.
#define BOOK_COUNT 1000
Book_info Books[BOOK_COUNT];
We extend this example in the following sections to illustrate unions and recursive
data structures.

Exercise
Use the library function qsort to sort an array of Book_info structures on the
author field.
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Answer
Given the above declaration of Books, the following code fragment shows how to
invoke qsort.
extern void qsort();

...
qsort((char ∗)Books, BOOK_COUNT, sizeof (Book_info), compare);
...

compare(b1, b2)
Book_info ∗b1;
Book_info ∗b2;
{

/∗ for simplicity we ignore upper/lower case comparisons ∗/
return strcmp(b1−>author, b2−>author);

}

5.8  Unions
A union is used for data structures that hold any one of several different types (it is
like Pascal’s variant record). For example, we might need to alter the Book_info
definition if the library were to hold items other than books. Suppose we wanted to
keep a catalog with say, films and toys. It would then make sense to define a
catalogue entry like this
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enum lib {childrens, central, reference, stack};
enum holding_type {book, film, toy};
struct catalog
{

char ∗title; /∗ Book’ s title ∗/
enum holding_type holding;
union
{

struct /∗ used for books ∗/
{

char ∗author;
char ∗classification; /∗ Dewey or F code ∗/

} book_info;

struct /∗ used for films ∗/
{

char ∗director;
char ∗producer;

} film_info;

char ∗brand; /∗ used for toys ∗/
} info;
enum lib held_in; /∗ Sub−library of holding ∗/
int quantity; /∗ Number of copies held ∗/

};
struct catalog x;
struct catalog y;
where it is your responsibility to be consistent in the view taken of the union. If
you are sloppy in the use of unions using, say x as a book at some points in the
code and interpreting the same value as a film in other, the program may behave
unpredictably.

5.8.1  Declaration and initialisation
As the declaration for info shows, union declarations have a similar form to struct
declarations. We could have separated the union definition from that of the
catalog structure like this.
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enum lib {childrens, central, reference, stack};
enum holding_type {book, film, toy};
union holding_info
{

struct /∗ used for books ∗/
{

char ∗author;
char ∗classification; /∗ Dewey or F code ∗/

} book_info;

struct /∗ used for films ∗/
{

char ∗director;
char ∗producer;

} film_info;

char ∗brand; /∗ used for toys ∗/
};
struct catalog
{

char ∗title;
enum holding_type holding;
union holding_info info;
enum lib held_in; /∗ Sub−library of holding ∗/
int quantity; /∗ Number of copies held ∗/

};
struct catalog x;
struct catalog y;
A union is usually a substructure of a struct and there is generally a field in the
structure to specify the appropriate view of the union: in our example, the value of
holding indicates whether the struct is for a book, in which case we should use the
book_info structure in the union.

5.8.2  Union accesses
You access union fields in exactly the same way as struct fields. So, for example,
the following code prints the information about the item x in the library collection.
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switch ((int)x.holding)
{
case (int)book:

fprintf(stdout, " author: %s \n" , x.info.book_info.author);
break;

case (int)film:
fprintf(stdout, " producer: %s \n" , x.info.film_info.producer);
break;

case (int)toy:
fprintf(stdout, " brand: %s \n" , x.info.brand);
break;

}
Since a union data structure is one area of storage, large enough for the largest
form of the union, you must take great care to be consistent in your interpretation
of a union data structure: there are no checks or warnings on this.

Exercise
Declare a data structure that holds a string and one value which can be any of the
types, int, double or char.

Answer
This might be a record within a symbol table and here is one form.
enum symbol_type {Int, Double, Char};

struct symbol_info
{

char ∗identifier;
enum symbol_type Type;
union
{

int i;
double d;
char c;

} value;
};

5.9  Recursive data structures
It is beyond the scope of this book to discuss the selection of data structures and
representations for a particular situation. However, we illustrate the form of some
data structures in terms of information about a library’s collection. The array of
Book_info structures has severe limitations if we need to delete books from our
records or if we need to preserve some sort of order to facilitate efficient searching
of the catalogue.

One approach is to keep the information as a linked list, using a data structure
like this.
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struct clist
{

char ∗title; /∗ Book’ s title ∗/
char ∗author; /∗ Author(s) or Editor(s) ∗/
char ∗classification; /∗ Dewey or F code ∗/
enum libs heldin; /∗ Sub−library of holding ∗/
int quantity; /∗ Number of copies held ∗/
struct clist ∗next; /∗ Pointer to next book in list ∗/

};
We have one extra field, next, which is a pointer to another clist structure that has
information on the next book. We can create a new clist structure with a function
like this
struct clist ∗
create(cl)
struct clist ∗cl;
{

struct clist ∗ncl;

ncl = (struct clist ∗)salloc(sizeof (struct clist));
ncl−>next = cl;
return ncl;

}
where the last item has its next field set to a null pointer.

Then we can use the following function to search for all books by a given
author.
struct clist ∗
find(author)
char ∗author;
{

struct clist ∗t;

for (t = first_book; t != (struct clist ∗)0; t = t−>next )
if (strcmp(t−>author, author) == 0)

break;
return t;

}
An alternate approach is to keep the books in a sorted binary tree using this
structure where the sort key is the author field.
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struct ctree
{

char ∗title; /∗ Book’ s title ∗/
char ∗author; /∗ Author(s) or Editor(s) ∗/
char ∗classification; /∗ Dewey or F code ∗/
enum libs heldin; /∗ Sub−library of holding ∗/
int quantity; /∗ Number of copies held ∗/
struct catalog ∗left; /∗ Left subtree ∗/
struct catalog ∗right; /∗ Right subtree ∗/

};
In a real library application you would probably allow many search keys and you
may use database techniques.

5.10  Bitfields
You can specify the size, in bits, of a structure field. These, so-called bitfields can
be useful where you want to regard a data entity as a collection of bits as in the
following.
struct IOdev
{

unsigned R_W : 1;
unsigned Dirn : 8;
unsigned mode : 3;

};

struct IOdev dev1 = {01, 0, 07};
struct IOdev dev2;
This declaration establishes a bitfield that is to be used in driving an I/O device.
The component fields are all unsigned.

This makes for a quite convenient way to do bit-picking as in the following
code

if (dev1.mode == 03)
...

dev1.R_W = 1;
dev1.Dirn = 01;

The alternative is to set up an unsigned int and use masks with the logical and
shift operators we saw in Chapter 3. Bitfields pose some problems for portability:
the order in which the fields are stored is left to right within a word on some
machines and in other machines, fields are stored right to left.

Bitfields can be mixed with other structure fields as in the following example.
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struct devIOT
{

char ∗description;
unsigned R_W : 1;
unsigned :0; /∗ alignment ∗/
unsigned Dirn0 : 1;
unsigned Dirn1 : 1;
unsigned Dirn2 : 1;
unsigned :4; /∗ padding ∗/
unsigned mode : 3;

} dev3 =
{

" first device" ,
1,
0,
1,
0,
2

};
Unfortunately, you cannot have an array of bitfields; so we cannot simplify the
rather unwieldy definitions for the 3 Dirn bits. You can align a bitfield as shown in
the example where we want to be sure that Dirn0 is on a word boundary regardless
of whether R_W ends on a word boundary. You can also pad over bits in the word
that you want to ignore as we do for the four bits between Dirn2 and mode. On the
matter of initialisations, bitfields are like other structure fields. So you can
initialise them only if the struct is external or static.

No single bitfield may overlap a word boundary; so the maximum size of a
bitfield is machine dependent. Bitfields are further limited in that they are
generally unsigned ints. (There is no requirement that other bitfield types be
supported: it is up to the compiler writer.)

In addition to using bitfields for the interface to hardware devices, they can be
convenient when you need to pack several structure fields into one word either to
save space or to meet the requirements of some other software. However, the
portability problems of bitfields mean that they are not heavily used in practice.

Exercise
Which of the int operations apply to bitfields.

Answer
All but the address-of & operator are fine.

5.11  Data Abstraction
In describing each of C’s types, we have defined the values that each type can
represent and the operations that may be performed on those data entities. There
are many situations where you need to define a complex data structure and the
permissible operations on it. Some modern languages allow you to define a new
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type in terms of the forms it can represent and all the permissable operations. Then
you can declare any number of instances of data of that type. C does not have this
facility but it does allow information hiding which gives some of the main benefits
of data abstraction. You can write a collection of functions that manipulate a data
structure and you can ensure that the only way that other functions can use the data
structure is via the functions you provide for the task. This means that a
programmer may use the data structure without needing to know the details of its
representation and, even more importantly, they cannot inadvertently corrupt the
data structure because the only interface is via the functions you provide.

For example, suppose that you are writing a program that needs a symbol
table. The program should be able to put symbols into the table and extract details
associated with symbols already entered. However, the details of the data structure
used to hold the symbol table and the exact mechanism used to find or insert entries
is irrelevant to the rest of the program. So, the essential aspects of a symbol table
might be:

find(x) returns the entry
for x in the symbol table

add(x) adds x to the symbol table
delete(x) deletes the x entry

When you write the functions to manipulate the symbol table, you need to select a
representation for the symbol table. To ensure the integrity of the symbol table,
you would probably want to be able to ensure that all accesses and modifications to
it be performed exclusively by your utility functions. For this you need to define an
interface like that summarised above as the sole means of communication between
the symbol table and the rest of the program. You can achieve what is needed
using C’s scope rules. In the case of the symbol table, you create a file that looks
like this.
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/∗
∗∗ Global symbols available in this file and included in other files
∗∗ which use the symbol table.
∗/
struct Entry { ... };
typedef ... Key_type;

/∗
∗∗ The symbol table is a hashed array of structures but this is a detail
∗∗ that is kept private to this file.
∗/
static struct tableitem
{ ...
} table[N];

static int
hash(key) /∗ returns the hashed index for the item ∗/
Key_type key;

/∗
∗∗ ‘find’ returns a pointer to an ‘Entry’ structure with a copy of the
∗∗ symbol table information associated with ‘key’
∗∗ or NULL if ‘key’ is not in the symbol table.
∗/
struct Entry ∗
find(key)
Key_type key;

...

/∗
∗∗ ‘add’ adds the ‘new_entry’ to the symbol table.
∗∗ returns 0 if successful
∗∗ returns 1 if it fails because there is not enough room
∗∗ returns 2 if there is already an entry with the same key as ‘new−entry’ .
∗/
int
add(new_entry)
struct Entry new_entry;

...

/∗
∗∗ ‘delete’ removes the information associated with ‘key’
∗∗ reurns 0 if successful
∗∗ returns 1 if there is no match for the key
∗/
int
delete(key) ...
Key_type key;
The actual data structure that is used to implement the symbol table is hidden from
functions in all other files. In addition, functions like hash are hidden. Only the
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find, add and delete functions are accessible outside this file. This interface
makes it easy to alter the way that the symbol table is implemented quite
independently of functions that use the symbol table. So, for example, we might
find that an array of structures was less efficient than a tree structure. By altering
the static structures and functions, as well as the dependent functions within this
file, we could effect the change of data structures. Yet all functions that make use
of the symbol table would behave correctly without modification.

5.12  A complete program
We now discuss a program which uses several of the data structures we have
discussed. It takes the current time on the machine and gives the time at various
locations around the world. So, if you run the program in Sydney at 19 minutes
past 1 in the afternoon with the Unix command

wt london
it prints
At 13:19 here, it is 03:19(today) in london
The code for the program is on the next page. The preprocessor commands are
similar to ones we have used in the past. We need to include stdio.h in order to use
the standard I/O functions and time.h for the definition of tm and for localtime.
We have defined the symbols HOUR and OURZONE so that we can make the
compiler do arithmetic for us and for clarity.

We use one structure t for the time zone of the host machine. The structure
time_diff represents a place name and its time difference from Greenwich Mean
Time (GMT) and places is an array of time_diff structures.

The program starts, like many C programs, by checking the program
arguments. First we check if the wrong number of arguments has been supplied
and if so, we give a message in a form that is common in UNIX. It gives a brief
indication of the proper usage form for the program. Note that we have followed
the usual practice of totally ignoring the third program parameter, envp, because
we do not need it here.

Next we call the time function, which returns the current time in clock (in
seconds since January 1st 1970). We use clock in the call to localtime to set t (a
tm structure as defined in time.h) with the full date and time that corresponds to the
value in clock. We use the local time in hours and minutes to calculate lmins, the
local time in minutes past midnight.

The loop scans through the places array, looking for an element with a place
name that matches the command line argument. If we reach the sentinel element of
the array, we quit the program with the exit code of 1 to indicate an error.

If we find the place name, we calculate the time of day there, in minutes past
midnight. Next, we make an adjustment to the day as necessary.
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/∗
∗∗ world times
∗∗
∗∗ Usage is:
∗∗ wt location
∗∗
∗/

#include <stdio.h>
#include <time.h>

#define HOUR 60
#define OURZONE (10 ∗ HOUR) /∗ parentheses are customary here to

avoid precedence problems ∗/

extern long time();
extern void exit();

struct tm ∗t;

struct time_diff
{

char ∗name; /∗ name of place ∗/
int zone; /∗ minutes ahead (+) or behind (−) GMT ∗/

};

struct time_diff places[ ] =
{

{ " la" , −8 ∗ HOUR },
{ " chicago" , −6 ∗ HOUR },
{ " nyc" , −5 ∗ HOUR },
{ " london" , 0 },
{ " perth" , 8 ∗ HOUR },
{ (char ∗)0, 0 } /∗ sentinel value ∗/

};

main(argc, argv)
int argc;
char ∗argv[ ];
{

long clock;
int lmins; /∗ local minutes ∗/
int rmins; /∗ remote minutes ∗/
char ∗day;
int i;

if (argc != 2)
{

fprintf(stderr, " usage: %s location \n" , argv[0]);
exit(1);
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}

(void)time(&clock);
t = localtime(&clock);
lmins = (t−>tm_hour ∗ HOUR) + t−>tm_min;

for (i = 0; ; i++)
if (places[i].name == (char ∗)0)
{

fprintf(stderr, " %s: don’ t know about %s \n" ,
argv[0], argv[1]);

exit(1);
}
else if (strcmp(argv[1], places[i].name) == 0)

break;

rmins = lmins + places[i].zone − OURZONE;
if (rmins < 0)
{

day = " (yesterday)" ;
rmins += 24 ∗ HOUR;

}
else if (rmins > (24 ∗ HOUR))
{

day = " (tomorrow)" ;
rmins −= 24 ∗ HOUR;

}
else

day = " (today)" ;

printf(" At %02d:%02d here, it is %02d:%02d%s in %s \n" ,
lmins/HOUR, lmins%HOUR, rmins/HOUR, rmins%HOUR,
day, places[i].name);

return 0;
}

Exercises

1. Modify the program so that it takes the information about world times from a
file called world_times in the directory /usr/pub rather than having this data
built into the program. This version of the program can direct the user to the
world_times file if they enter a place name that the program cannot find.
(You will need to use functions that read from files other than standard input:
see page 000 in Chapter 7.)

2. Amend the program so that it can take account of daylight saving.
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Answers

1. The major difference here is that we scan the file, rather than a structure. We
use the standard functions, fopen and fscanf for which we define the file
name as WTFILE and we need wtf, a pointer to the file. We show the parts of
the program that change.

...

#define NSIZE 50 /∗ maximum size of place name ∗/
#define WTFILE " /usr/pub/world_times"

...
main(argc, argv)
int argc;
char ∗argv[ ];
{

FILE ∗wtf;
int zone; /∗ remote zone ∗/
int yesterday = 0;
char place[NSIZE];
...
/∗ open file for reading ∗/
if ((wtf = fopen(WTFILE, " r" )) == NULL)
{

fprintf(stderr, " %s: cannot open %s \n" , argv[0], WTFILE);
exit(1);

}

for (;;)
/∗ run through the file, reading places ∗/
if (fscanf(wtf, " %s %d" , place, &zone) != 2)
{

/∗ reached the end ∗/
fprintf(stderr, " %s: don’ t know about %s \n" ,

argv[0], argv[1]);
fprintf(stderr, " look in %s \n" , WTFILE);
exit(1);

}
else if (strcmp(argv[1], place) == 0)

/∗ found the place ∗/
break;

...
2. One approach is to augment the time_diff structure to have the starting and

finishing dates for daylight saving. Then we need to get the current date at
our local machine, adjust it as necessary for daylight saving, calculate the
corresponding time at the target place, check whether it corresponds to a
daylight saving period and if it does, make the required adjustment.
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5.13  Summary
An aggregate data structure can be

• a struct, which has fields (members) that can be of different types and it is
possible to specify the field size in bits;

• a union, which can hold one of several different types and is usually part of a
structure that also has a field to specify its type in a particular instance;

• an array, which is a collection of items, each of which is the same type;
• a string, which is an array of characters with the sentinel \0 to mark the end of

the string and
• structure fields and array elements can themselves be any aggregate data type.

A structure is viewed as a single entity and a whole structure can be assigned,
passed as an argument or returned by a function. An array is viewed as a collection
of items and cannot do any of these. The norm is to use a pointer to an array for
function arguments and function return values.

An array name can be viewed as a constant pointer. Pointer arithmetic is
commonly used to access array elements.

Initialisation is allowed for
• external and static arrays;
• external and static structures;
• all strings

The operators for aggregate data type accesses are
• . for accessing structure fields
• −> for accessing structure fields using a pointer to the structure
• [ ] for accessing array elements where A[i] is the same as ∗(A + i)

These three operators have higher precedence than the other operators and they
associate from left to right.
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The C Preprocessor

This chapter covers the full range of facilities provided by the preprocessor. Like
the C language itself, as described in the preceding chapters, the preprocessor
supports programming at various levels including the construction of large systems.
Two uses of the preprocessor that you have already seen are

• #include for including files of text into a program
• #define for defining constants

Others that you meet here are
• #define for defining powerful in-line macros
• #if, #ifdef, #ifndef and #undef for managing conditional compilation

and #line, a C command that looks like a preprocessor command and preserves line
numbers in language preprocessors.

6.1  Introduction
We have already made simple uses of #include and #define. These are so
fundamental to C that it is unusual to write a program that uses neither of them.
This makes the preprocessor an essential part of C.

Indeed, it is easy to think of the preprocessor as a first pass of the compiler.
But you can equally see it as a separate filter that transforms C programs before
they reach the compiler.

Preprocessor commands have a different syntax from most C code. They start
with a # in the first character position in the line and they have no semicolon
terminator.

6.2  Text Inclusion
The #include incorporates text of one file into another. It is widely used to include

• #defines,
• externs,
• typedefs,
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• struct definitions and
• nested #includes.

So #include is generally used to include various types of declarations. It is most
unusual to have other code because C supports separate compilation which means
that you should not need to include a whole function text in another file of source
code. Nor should you need to include other executable code in several parts of a
program: it is better to encapsulate the code in a function that is called at each
point it is needed.

The #include can take two forms:
#include "filename"

or
#include <filename>

In either case, the preprocessor inserts a copy of filename at that point in the code.
The difference between the two forms is in the place that the preprocessor looks for
the file. In the first, it looks for the named file in the current directory unless a full
UNIX pathname is given. So, for example, the lines
#include " /usr/kim/defs.h"
and
#include " defs.h"
include the same file when the current directory is /usr/kim.

We have seen the second form of the #include in cases like this
#include <stdio.h>
which includes standard I/O definitions, such as EOF. With this form, where the
file name is enclosed in angled brackets, the preprocessor searches a particular
library directory, typically /usr/include, for the file to be included. The directory
to be searched can be changed from the default with the −Idirectory-name
parameter on the cc command.

By convention, files that are to be #include have the suffix .h. This makes it
easy to distinguish #include files from other C source code. The convention
probably originated from the term header file since most #included files belong at
the head of a file.

6.3  Defined symbols
To this point we have used #defines to create constants (sometimes called manifest
or symbolic constants). However, this is just the simplest use of the preprocessor’s
macro facility. We now discuss the full range of macros you can write using
#define, from the simple but important definition of a constant value or expression
to macros that can be called like C functions.

Parameterless macros
It is good programming practice to avoid using ‘magic numbers’ directly. For
example, in a program that produces text for a device that has 60 characters per
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line, you can use #define to define an identifier LINESIZE with the value 60. This
has two advantages over using 60 directly: it makes the meaning of the code much
clearer since there may be many other uses for the number 60. But even more
important in a program that is really going to be used, it is inevitable that there will
be changes: a new output device might accept 110 characters. If the magic number
60 is embedded in the text, it could be a very tedious and risky business to change
every relevant occurrence of the string 60 and no other. (Careless editing might
produce a program that used 110 second minutes!).

Having convinced yourself that your program should represent the line length
with a suitable identifier, you use a preprocessor command of the following form.

#define LINESIZE 60
Then you can use LINESIZE, as necessary throughout the program text. The
preprocessor replaces each occurrence of the identifier, LINESIZE, with the token,
60. When a new output device appears, it is a safe and easy operation to alter the
#define appropriately.

A common use for defined symbols is in declarations, especially in array
declarations where the size of the array is specified by a defined symbol as in this
example.

#define NUMLINES 66
#define LINESIZE 80

char page[LINESIZE ∗ NUMLINES]; /∗ space for a whole page ∗/
The preprocessor deals with a #define as follows: upon finding each occurrence of
the identifier, it does a textual replacement, substituting the token for the identifier.
The replacement string can be a series of tokens, as in this example where
DAYSECS is the number of seconds in a day.

#define DAYSECS (24∗60∗60)
We use parentheses to prevent precedence problems.

Some programmers avoid using defined symbols out of misplaced concerned
for efficiency: the overhead for a defined symbol like DAYSECS is small and since
constant expressions are calculated by the compiler, it incurs no runtime penalty.
The advantages far outweigh the small overhead: the program becomes more
readable and maintainable and you avoid error-prone hand calculation.

The expression may be arbitrarily complex but it is a good idea to enclose it in
parentheses. Since the preprocessor simply replaces the defined identifier with the
token string, you can get problems in cases like this.

#define SUM 3 + 4 /∗ DANGEROUS ∗/
...
x = SUM ∗ 3;

After preprocessing the assignment statement becomes
x = 3 + 4 ∗ 3;

and precedence rules make the expression value 15, not 21. This problem can be
completely avoided if you routinely use parentheses, like this.

#define SUM (3 + 4)
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The scope of a #define is confined to its file. To make a definition available
in several files, you use #includes.

The usual style is to make #defined identifiers upper case. This makes it
easier for someone reading the code to see which identifiers are defined symbols.

The general form of the command is
#define identifier token-string

where the token string can span several lines, using a backslash (\) at the end of
each but the last line.

6.3.1  Macros with parameters
In its full generality, the #define can define macros with parameters (sometimes
called inline functions). Calls to these look just like a call to an ordinary C
function. Indeed, you have seen some standard macros, including isupper, isalpha
and isdigit. We followed the usual practice of calling these functions. In fact, they
are usually implemented as macros for efficiency but the programmer using them
may not be aware of this. These are invoked in the same way as a C function,
including parameters.

Consider the following example of a macro that finds the smaller of two
values.
#define min(a,b) ((a) > (b) ? (a) : (b))
We can use it like this

y = min(stsize, 132)
which the preprocessor translates to this

y = ((stsize) > (132) ? (stsize) : (132))
which is the form that is presented to the compiler. The arguments in these macros
are called by name which means that the actual arguments textually replace the
formal arguments in the macro. This means that you can get nasty side effects as in
the following use of min

y = min(a++, b);
which becomes

y = ((a++) > (b) ? (a++) : (b))
which is almost certainly not what was intended.

The primary benefit of a macro over a true function is in terms of runtime
efficiency: a function call incurs some overhead where a macro involves replacing
the call by the full code text before compilation. (The tradeoff for the gain in
runtime efficiency is that it may take up more code space.)

The general form of a macro definition is
#define identifier(identifier, ..., identifier) token-string

and macro definitions can extend over several lines in the same way as other
#defines, with a backslash at the end of all but the last line of the definition.
However, the convention for macro identifiers is that they may be lower case. This
means that they may look like function calls which can be confusing. We return to
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this matter in chapter 7 when we discuss some of the standard macros.

Exercises

1. Write macros to select bits from an integer

bit0(x) returns the least significant bit of x

bit(x,n) returns the n-th bit (counting the least significant bit as 0)
2. What does the following program look like after preprocessing?

#define NUMBER 50

/∗ print NUMBER squares ∗/
main()
{

int i;

printf(" NUMBER = %d \n" , NUMBER);

for (i = 1; i < NUMBER; i++)
printf(" %d \t%d \n" , i, i∗i);

}
3. Why are the formal parameters parenthesised in the following example?

#define min(a,b) (a)<(b)?(a):(b)

Answers

1.
#define bit0(x) ((x) & 01)

#define bit(x,n) (((x) >> n) & 01)
2.

main()
{

int i;

printf(" NUMBER = %d \n" , 50);

for (i = 1; i < 50; i++)
printf(" %d \t%d \n" , i, i∗i);

}
Note that the preprocessor only replaces occurrences of the defined identifier.
So the word NUMBER in the printf string is not touched.

3. It avoids precedence problems.
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6.4  Conditional Compilation
Since the early days of computing, assemblers have allowed programmers to
specify lines of a program that are to be compiled under certain conditions. This
facility is not often found in higher level languages. C has a flexible facility for
conditional compilation using the commands, #define, #ifdef, #ifndef, #if-#else,
and #undef.

One common use for conditional compilation is to selectively compile debug
output statements. For example, the following printf is compiled and executed
because DEBUG has been defined.

#define DEBUG
...
#ifdef DEBUG

printf(" loop counter = %d \n" , i);
#endif

The #ifdef and #endif commands delimit code for conditional compilation.
To prevent execution of this debug printf, simply remove the #define

statement or add
#undef DEBUG

before the #ifdef. (You can also set DEBUG from the cc command line: see page
000.)

The #undef is most useful in complex systems that are configured to a form
that is fairly typical. For example, you may have a program you want to run on a
machine that does not have a device corresponding to FASTPRINTER in this code.
#ifndef FASTPRINTER

.... /∗ code that you need compiled ∗/
#endif
Now you might expect that most machines do have a FASTPRINTER and the
program might have an #include file with a definition for the identifier. You can
insert the statement

#undef identifier

before the #ifndef to make FASTPRINTER undefined from that point (until a
#define is encountered).

The preprocessor also allows you to test whether an identifier has not been
defined like this.

#ifndef DEBUG
printf(" MyProg Version 1.0 (production)" );

#endif
You can use the #if-#else where you want to compile one section of code if an
identifier is defined and another if not.
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#ifdef DEBUG
printf(" MyProg Version 1.0 (debug) \n" );

#else
printf(" MyProg Version 1.0 (production) \n" );

#endif
You can use expressions to select the code to be compiled as in the following case
where we need one set of code for line printers with more than 132 columns and
different code for smaller printers.

#if COLUMNS > 132
...code for wide printers...
#else
...code for narrow....
#endif

If the expression is true (non-zero), the first piece of code is passed to the compiler
(the lines between the #if and the #else) and otherwise, the second piece of code is
compiled (after the #else to the #endif).

These commands can be nested just like if-else statements in C itself. The
preprocessor handles the dangling #else in the same way as C: #else always
belongs to the closest #if that has not be closed by #endif.

The combination of #ifdef, #ifndef, #if, #else and #endif enable you to keep
a single program text which contains different versions of the program for different
purposes. Common uses for this are in programs being distributed to sites with
different devices or device parameters and different machine characteristics, as well
as for debugging versions. A very common use is for different versions of UNIX
with different #defined symbols denoting the different versions.

On the other hand, overuse of conditional compilation can make a program
unnecessarily hard to read. Like most language features, these need to be used with
discretion.

Exercises

1. Given a case like this
#if A

...code A...
# if B

...code AB...
# else

...code C...
# endif
#endif
the #else belongs to #if B. If you want the opposite interpretation, what do
you do?

2. What if you want different code for 5 variants of a device?

Answers
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1. You cannot use brackets to overide the default attachments of the dangling
#else, so you need to alter the control like this
#if !A

...code C...
#else /∗ A true ∗/

...code A...
# if B

...code AB...
# endif
#endif

2.
#if DEV=1

...
#else
#if DEV=2

...
and so on.

6.5  Line numbers on preprocessed text
Suppose you are writing a program that translates Pascal into C. Once a Pascal
program has been translated to C, you would like the C compiler to report any
errors in terms of the original Pascal source text. Your translator generates one or
more lines of C for each Pascal line. If it also generates a line of the form

#line line-number file-name

before the C statements that correspond to the line-number line of the Pascal
program in file-name, the C compiler produces diagnostics in terms of the original
Pascal line number and file.

In this type of application, you would probably use the two predefined
symbols __FILE__ and __LINE__ which have the current source code file name
and line number. (We have a macro that uses these symbols on page 000 of this
chapter.)

Although the #line command has the same syntax as preprocessor commands,
it is actually handled by the compiler. Its use is normally restricted to programs
that produce C programs.

6.6  Preprocessor control from the cc command
We showed in Chapter 4 (page 000) how to use cc to run programs. In Figure 4.7
on that page, we depicted the preprocessor as tightly coupled to the compiler. In
fact, you can get the form of a program after it has been through the preprocessor
and before it reaches the compiler. The actual flag used for this can vary but it is
often −E.

In addition, you can set the values of defined symbols on the cc command
line, using the −D flag as in this example.



-- --

146 C in the UNIX Environment

cc −DLINELENGTH=80 prog.c
which has the same effect as the command
#define LINELENGTH 80
at the very beginning of the program. Any #define or #undef within the program
over-rides the command line setting.

There is also a shorthand form which looks like this.
cc −Didentifier

and is equivalent to
#define identifier

You may need to use quotes to avoid the shell interpreting special characters inside
the token string, as in:

cc −D"VERSION=6(1984)" prog.c
where we need to protect the parentheses from the shell. To put a double quote in
the token string, use a backslash like this

cc -Dnamestring=\"MyProg\" prog.c
The −D flag may also be repeated allowing several identifiers to be defined. This is
very useful for switching debug code on and off using the #if commands without
having to modify program code. For example:

cc −DTEST=3 −DLINESIZE=80 −DVERSION=1.2 myprog.c −o myprog
may enable level 3 debug output, determine the line size and version number.

The general form is
cc -Didentifier[=token-string]

Exercise
Use the appropriate flag on your cc to get the preprocessed form of a program so
that you can see what the preprocessor produces.

6.7  Perspectives
The facilities provided by the C preprocessor are an integral part of the C language.
However, it is possible to use another program in place of the standard C
preprocessor. Some implementations of the cc command allow you to specify
alternate preprocessors or, indeed, alternate passes of the C compiler. You may use
a more powerful macro processor such as m4 as the preprocessor.

The preprocessor provides powerful facilities for modifying your program
before it reaches the C compiler. The macro facility is especially useful for
improving the efficiency of code and as a debugging aid. Consider the following
example of a macro that processes assertions when the symbol CAUTIOUS is
defined. (It is similar to the standard assert.)
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#ifdef CAUTIOUS
#define assert(expr) \

if(!(expr)) \
{ \

printf(" assertion \" (expr) \" failed \n" ); \
printf(" (line %d, file %s) \n" , __LINE__, __FILE__); \

}
#else
#define assert(expr) /∗ null statement ∗/
#endif
This can be used as in:

assert(charcnt < 100);
which is handed to the C compiler as

if(!(charcnt < 100))
{

printf(" assertion \" (charcnt < 100) \" failed \n" );
printf(" (line %d, file %s) \n" , 18, " myprog.c" );

};
If we remove the #define for CAUTIOUS, the preprocessor removes all asserts.

The preprocessor can also be misused, making your C program almost
unreadable through the use of too many defined symbols and macros or
complicated conditional compilation. For example it is possible to make C look
like an entirely different language. The definitions:
#define IF if(
#define THEN )
#define BEGIN {
#define END }
#define ELSE else
enable you to write your C to look like this:

IF a == 1 THEN
BEGIN

tryone();
trytwo();

END

Each C preprocessor typically has its own predefined symbols. These may be
related to the machine type or UNIX version. For example a preprocessor on a Vax
UNIX System V may have the symbols ‘vax’ and ‘sysV’ predefined. These
symbols are useful in controlling the compilation of different versions of a program
for different machines or systems.

Exercise
What happens to our assert macro in code like this
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if ( ... )
assert( ...);

else
...

and how can you fix the problem?

Answer
There is a dangling else problem. The body of the assert macro could be changed
to include a dummy else clause in the if statement.

6.8  Summary
To include text you use #include in the forms

#include "filename"

#include <filename>
Macros can be defined using

#define identifier token-string

#define identifier(identifier,...) token-string

and it is safer to put parentheses around the token-string .

Conditional compilation is controlled with selection commands #ifdef, #ifndef, #if,
#if-#else #define and #undef.

Source code line numbers in preprocessed text can be preserved using
#line line-number file-name
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C Libraries

We have already met some of the large collection of standard functions which are
grouped into various libraries. The Standard Library is automatically searched by
the loader and includes functions for:

• Standard I/O on
• standard I/O files
• any file

• System call I/O
• Storage Allocation
• String Handling
• Character Types
• Sorting and Searching
• Assertions
• Non-local goto
• System Interface
• User Information
• Time of day handling

Other libraries need to be explicitly searched and contain functions for:
• Mathematics
• Plotting
• Terminal Handling

We also describe several standard #include files.

7.1  Introduction
The standard C function library is a very important resource. Its functions have
been written by experts and well tested over many years and you can save a great
deal of effort by exploiting them to the full. The library helps you avoid re-
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inventing the wheel. So, for example, there is an efficient and flexible sort
function: C programmers rarely write their own sorts, preferring to use the supplied
one. Most of the functions in the standard libraries are written in C and are
designed with efficiency and portability in mind. (The remainder are written in
assembler and are implemented anew for each machine.) You should think very
carefully before writing your own version of a library function.

The large function library fits very well into the UNIX tools philosophy (as
described by Kernighan and Plauger in their ‘Software Tools’ books) where many
prewritten components are supplied. The basis of this approach is the observation
that many programming problems can be reduced to the simple task of assembling
the necessary function calls.

To take full advantage of the tools approach, you need to know what functions
are available. In this chapter, we give descriptions of most, but not all, the
functions in the standard C library. We aim to give you an understanding of the
most widespread and important functions and a feeling for the classes of functions
you should be able to find in the libraries. These libraries include a wide range of
functions, from simple but indispensable ones that open, close, read and write files
to sophisticated functions that allow you to initiate and control other programs. An
expert UNIX C programmer has a detailed knowledge of most of the functions in
the standard library but this takes some time and effort.

Don’t be afraid to skim quickly through some sections of this chapter and refer
back to them when you need the information. Also, there are sections which
assume some knowledge of the UNIX file system. You may need to refer to one of
the many books about UNIX. (See our bibliography for a few.)

We illustrate the use of functions with code fragments and programs and we
include many hints and programming techniques that we have learned over years of
experience (some of it hard earned and bitter). We do not cover every tiny detail of
every function but rather we give a thorough treatment of the major ideas. Once
you have mastered this fundamental material, you can dip into Volume 1 of the
UNIX Programmer’s Manual: it is the reference for the detailed description of
UNIX commands and functions and it is an essential resource for any serious C
programmer working in the UNIX environment. (Most systems keep a copy of
these manual entries on line.) Your system documentation should have exhaustive
documentation for all the functions you can use, including ones that have been
written locally. The latter are likely to have been tailored to the particular
programming tasks common in your area.

When we refer to manual entries, we follow the usual convention of writing
the function name followed by its section in the manual. For example, the manual
entry for printf which appears in the third section of the manual is referred to as
printf(3). The sections of the manual group functions as follows.
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_________________________________________
Section Description of contents Example_________________________________________

1 Utility programs who
2 System calls exit
3 Functions from libraries printf
4 Special files tty
5 File formats passwd
6 Games
7 Miscellaneous
8 Maintenance_________________________________________

All of these are in Volume 1 of the UNIX Programmer’s Manual. (Volume 2 has
documents with tutorials and descriptions of major programs for a range of tasks
including text manipulation and program management.)

What are standard libraries?
At this point, we need to clarify just what is meant by standard functions . After all,
if you write programs in terms of functions that are not widely available, you
should at least be aware of the implications for portability. Unfortunately, there are
a number of de facto standards. For example, the IEEE P1003 standard (commonly
called POSIX) defines a set of 170 functions and most of these are very widely
available on all flavours of UNIX. By contrast, System V and Berkeley 4.2BSD
have many more ‘standard’ functions.

This chapter covers a safe subset of functions that are generally provided with
UNIX. Certainly this chapter does not give an exhaustive coverage for any of the
standards but it does give a solid overview of the standard libraries. More
important, it gives advice on common pitfalls in using an important core of
standard functions. However, it does not replace your system manual, which gives
terse but complete coverage of all that your system has to offer.

Linking functions
In our outline at the beginning of this chapter, we distinguished between functions
that are automatically searched by the loader and those you need to link explicitly.
The C compiler automatically searches the standard function library whenever
symbols (usually functions) remain undefined after linking together each of the
functions in the files given as arguments to the cc command. Sometimes you refer
to functions that are not found in the standard library but are available on your
system in a standard directory (usually /lib or /usr/lib). You can direct the loader to
search one of these libraries by compiling the program with the option −lX on your
cc command line, where X is the name of the library. We discussed this in detail in
Chapter 4 (page 000).

Accessing standard identifiers and linking functions
Right from Chapter 1, we have used standard predefined symbols like EOF which is
defined in stdio.h. As you can see, in many of our programs, we have to use the
preprocessor’s #include facility to make such symbols available. In this chapter,
we introduce many more files of standard symbols and state the file that must be
#included to make them accessible to your program.
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Format for standard function descriptions
For each function, we give the form of its header, including a brief comment on the
behaviour of the function in terms of its arguments and return value. This is
enclosed in a box for easy reference. The main text discusses other aspects of the
functions, giving advice on their appropriate use, common problems and examples.

We use the same format for ‘functions’ that are actually implemented as
macros.

7.2  Input and output
As we noted in Chapter 1, there are no I/O statements in C. Instead, all I/O is done
by functions that execute system calls. This approach gives considerable flexibility
since you can write your own special purpose I/O functions.

The lowest level of I/O is provided by UNIX system calls. These allow you to
read and write blocks of memory but provide no formatting or buffering. Although
this level of I/O is the most basic, it is not as convenient for general applications
programming as the Standard I/O Library. We illustrate the relationship between
the System Call I/O functions, the Standard I/O functions and a typical
applications program in Figure 7.1.

function callstandard I/O

system call

user program

standard I/O functions

UNIX kernel

Figure 7.1. Relationship between a user program and I/O functions
There are functions in the standard I/O package to carry out character at a time I/O
or formatted I/O operations on any file. You have already seen several of these in
earlier chapters.

Before we pursue the details of the I/O functions, we observe that the UNIX
files have a very simple structure. In fact, they have almost no structure at all! All
UNIX files consist of a variable length sequence of bytes. There is no record or
block structure imposed. You may read a single byte or a million bytes from a file
and, assuming the file is big enough, exactly one or a million bytes are returned. So
you do not have to manipulate a complex entity - you simply do I/O on streams of
characters.

Of course, you may impose your own record structure on the file if you wish.
It may be appropriate, for example, to construct a file consisting of fixed length
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records. The UNIX file system itself imposes a structure on directory files: they
consist of a sequence of fixed length records each containing two fixed length
fields.

7.3  I/O on the standard files
In this section, we treat I/O on the standard files which are automatically available
to your program. These are the standard input , standard output and
standard error message files, also commonly referred to as stdin, stdout and
stderr because these are the names of the file pointers associated with them (as we
discuss at greater length in the section that introduces file pointers on page 000). In
this section, we discuss functions that read from standard input and write to
standard output. Before we deal with the functions for I/O on the standard files, we
show how useful this is in the UNIX environment.

program standard error
standard output

standard input

By default, all three files are associated with a user’s terminal. So, in an
interactive program, a read from standard input takes what the user types, while a
write to standard output or standard error puts characters on the screen. The UNIX
shell allows the user to override this default by redirecting any of the standard files.
In addition, UNIX allows the standard output of one program to feed into the
standard input of another program using a pipe . The shell allows a user to specify
that one program pipes into another as in this command,

who | lpr
which runs the command who piping its standard output to the standard input of the
program lpr. The who command normally produces a list of currently logged on
users on its standard output file and lpr reads data from its standard input and sends
it to a printer. So the combined command gets a list of logged on users and prints it
on a printer.

Because pipelines are so useful, programs that read data from standard input,
modify it and write it to output, are important building blocks. They are called
filters . For example we can use the sort command as a filter in an extended
pipeline like this

who | sort | lpr
which sends a sorted list of logged on users to a printer.

Many of the functions in the Standard I/O Library are implemented as C
preprocessor macros. The definitions of these macros along with a number of useful
typedefs and other definitions are in the file stdio.h. You need the the
preprocessor command
#include <stdio.h>
to incorporate these definitions into any program that uses Standard I/O functions.

7.3.1  Character I/O
An elementary form of I/O is the reading and writing of characters to or from the
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standard input and output files. In Chapter 1 we used getchar and putchar to read
and write single characters.

/∗
∗∗ ‘getchar’ returns the next character from input.
∗∗ If at end of file, it returns the predefined value EOF.
∗/
int
getchar()
/∗
∗∗ ‘putchar’ writes the character ‘c’ to the standard output file.
∗∗ The value of ‘c’ is returned.
∗/
int
putchar(c)

_____________________________________________________________________

_____________________________________________________________________

Note that getchar returns an int. This is because the integer value −1 is returned
when end of file is found. Characters read from a UNIX file may take any
unsigned value that can be represented in 8 bits (0 to 255). If getchar were to
return a char there would be no way to distinguish a legal value from the special
end of file indicator value. One solution would be to use one of the 256 possible
values. But this would be unacceptable because a binary file, such as a program
object code file, would almost certainly contain all possible values within it. The
alternative is to enlarge the set of values that can be returned by getchar so that
there is an extra value to represent end of file and this is what UNIX does in
making −1 the end of file indicator value.

The include file stdio.h has the definition
#define EOF −1
so the result of getchar may be compared with EOF to detect end of file.

The putchar function writes a character to the standard output file. Both
getchar and putchar are commonly implemented as macros. We use them in the
following program which copies its standard input file to its standard output file
using getchar and putchar.
/∗
∗∗ copy standard input to standard output using ‘getchar’ and ‘putchar’ .
∗/

#include <stdio.h>

main()
{

int c;

while ((c = getchar()) != EOF)
putchar(c);

}
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In addition to I/O that operates on a character at a time, there is a pair of
functions that read and write lines of ASCII characters, where a line is a sequence
of characters terminated by a newline character \n.

/∗
∗∗ ‘gets’ reads a string, terminated by a newline from standard input
∗∗ into the area pointed to by ‘s’ .
∗∗ The trailing newline is replaced by ’ \0’ .
∗∗ If at end of file, it returns NULL.
∗/
char
∗gets(s)
char ∗s;

/∗
∗∗ ‘puts’ writes the string ‘s’ onto standard output appending a newline.
∗∗ The predefined value EOF is returned on error.
∗/
int
puts(s)
char ∗s;

_____________________________________________________________________

_____________________________________________________________________

Here is another version of the program that copies standard input to standard
output, this time using gets and puts.
/∗
∗∗ copy standard input to standard output using ‘gets’ and ‘puts’ .
∗/

#include <stdio.h>
#define LINESIZE 512 /∗ This defines the maximum line length the

program can handle ∗/

main()
{

char line[LINESIZE];

while (gets(line) != NULL)
puts(line);

}
Note that you must make LINESIZE large enough for the longest line expected.

7.3.2  Formatted I/O
As you saw in chapter 1, scanf interprets characters from standard input according
to a format that you supply. The declaration of scanf is
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/∗
∗∗ ‘scanf’ reads characters from standard input according to ‘format’
∗∗ returns the number of items found and assigned.
∗/
int
scanf(format/∗ [, pointer] ...∗/)
char ∗format;

_____________________________________________________________________

_____________________________________________________________________

and scanf reads characters from the standard input file, matching them with the
supplied format, performing conversions and assigning results as needed. The
parameters to scanf are a pointer to a character string specifying the format and a
variable number of pointers to be used for the results.

The format string may contain white space (blanks or tabs), printing characters
or conversion specifications. White space is matched with white space on input.
Printing characters specify that the same characters must be found on input at that
point. Conversion specifications consist of the percent character (%) followed by a
character that determines the conversion to attempt. For example,

scanf(" age %d" , &age);
attempts to match the characters age followed by white space, followed by a
decimal integer. That integer value is assigned to the integer variable age.

The allowable conversions include:
______________________________________________________
Conversion
Character Input field Result pointer type

______________________________________________________
d decimal integer int
o octal integer int
x hexadecimal integer int
s character string char
c single character char

e, f floating point float
l [e, f] double precision double

h [d, o, x] short decimal, octal or hex short int
l [d, o, x] long decimal, octal or hex long int______________________________________________________

The codes d, o, x may be preceded by an l to indicate that a long integer is
expected, in which case a pointer to a long int must be provided. Similarly, h
preceding d, o, or x indicates a short integer. The codes e or f preceded by l (lower
case L) indicates a double precision number expected and a pointer to a double
must be provided. The conversion specification code may also be preceded by a ∗
indicating that a field is to be matched but not assigned to a result pointer. For
example,

scanf(" %s %∗d %d" , name, &age);
reads a string into name, skips a number and then assigns the next number to age.

Scanf returns the number of input items that it successfully matched and
assigned. If end of file is encountered, the value EOF is returned in the same way
as the getchar function described above. A return value of 0 indicates that no items
were assigned. You should normally check that the value scanf returns is as
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expected. In general, if there is a mismatch between a literal string in the format
specification and the actual text read, the only indication is the count of items that
scanf returns. This often makes scanf unsuitable for writing really robust I/O.

If you want complicated matching of the input lines with some pattern, scanf
is not recommended. Instead, you should consider using a series of scanf calls,
checking the result of each call. Alternatively, you can write your own input
function using getc or read a whole line at a time and use functions like sscanf
(which we discuss soon) to analyse each line. The scanf(3) manual entry has more
esoteric details and examples.

The output function printf is similar to scanf. Its first argument is a pointer to
a string argument that specifies the output format and then it accepts expressions
that are to be written.

/∗
∗∗ ‘printf’ prints the ‘arg’ values according to the ‘format’ specified
∗∗ It returns the number of characters it printed.
∗/
int
printf(format/∗ [, arg] ...∗/)
char ∗format;

_____________________________________________________________________

_____________________________________________________________________

For example, the following program prints the value of pi
#include <math.h>
main()
{

double pi = 4.0 ∗ atan(1.0);

printf(" The value of PI is %f \n" , pi);
}
giving this output.

The value of PI is 3.141593
As with scanf, the format string includes ordinary characters which are printed
directly and sequences beginning with a percent (%) character specify that the next
printf argument is to be printed according to the given format.

As well as free format output, printf provides facilities for finer control over
the formatting of items. Integer items can be left or right justified in a given field
width and may be padded with blanks or zeros. The field width can be specified in
the format string or can be taken from an argument to printf. Strings may also be
left or right justified in a given field. For example, the following program fragment

hour = 12;
min = 5;
printf(" >%20.20s %02d:%02d \n" , " lunch" , hour, min);
hour = 16;
printf(" >%20.20s %02d:%02d \n" , " important meeting" , hour, min);

gives the output
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> lunch 12:05
> important meeting 16:05

The general form of a conversion specification can have the following
elements.

%–f.plc
The % introduces a conversion specification. The – indicates left justification in the
field. A digit string f gives the total field width. A dot followed by a digit string p
gives the precision or number of digits after the decimal point for float or double
types or the maximum number of characters to be printed from a character string.
Finally, the particular conversion is indicated by a character as in scanf which may
be preceded by l indicating a long type. Short integers may be printed with the
formats for ordinary integers.

The p in f.p may be replaced by an asterisk to indicate that the next printf
argument to be processed contains the precision value. This allows some format
changes to occur at run time as a consequence of some aspect of the data. This is
particularly useful to indicate the field width for printing a string or whether the
output of the string should be suppressed (by using a zero precision value).

You may be wondering how to print the percent sign itself. Since % normally
introduces a format conversion, you use another percent sign as the conversion
code as in

printf(" %% is a percent sign! \n" );
which prints

% is a percent sign!
Ordinary characters can be printed by simply including them in the format string
but nonprinting control characters are often required. We have seen one such
character in most of our uses of printf where we have the character \n at the end of
the format string. This indicates that the newline control character, ASCII code 012
(octal), is to be printed. There are other useful abbreviations of control characters:

Sequence Octal Code Description
\t 011 tab
\n 012 newline
\f 014 form feed
\r 015 carriage return

You can use any of the character constants in any of their forms. (See page 000 in
Chapter 3.) These may include characters that are specified by their ASCII codes.

7.4  Files other than standard input and output
We now introduce functions that can act on any file. When a program accesses a
file other than the standard input, output and error files it must first open the file
(using a standard function): the standard files are automatically open when a
program begins execution. You also need to use a file pointer which is declared in
terms of a predefined type FILE ∗. For example
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FILE ∗accfile;
declares the variable accfile as a pointer to a file. You can associate any file with
the pointer accfile using one of the file opening functions described below. The
standard files have predeclared file pointers:

stdin standard input
stdout standard output
stderr standard error

The declarations of FILE, stdin, stdout and stderr are in stdio.h. In the
answer to an exercise on page 000 we illustrated the use of functions that open a
file, read data and close the file. We now discuss the general forms of the functions
that do these tasks.

7.4.1  Opening Files
The usual way to open a file (and associate a file pointer with a particular file) is
with fopen.

/∗
∗∗ ‘fopen’ opens the file ‘filename’ for reading or writing
∗∗ as defined by ‘type’ .
∗∗ On failure, it returns NULL.
∗/
FILE ∗
fopen(filename, type)
char ∗filename;
char ∗type;

_____________________________________________________________________

_____________________________________________________________________

The type argument can take the values:

"r" open for reading
"w" create for writing,

(existing files are truncated.)
"a" open for append,

(existing files are opened for writing at end of file.)
"r+" open for reading and writing,

(existing files are positioned at the beginning and
both reading and writing allowed.)

"w+" create for reading and writing.

If the file does not exist or the user does not have the appropriate read or write
permission, fopen fails to open the specified file, and returns the value NULL.

When your program no longer needs a file, you should close it with the
matching fclose function.
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/∗
∗∗ ‘fclose’ closes a file with pointer ‘filep’ , flushing and freeing buffers.
∗∗ On error, it returns non−zero.
∗/
int
fclose(filep)
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

All files are automatically closed when your program terminates. However, it is
clearer if you explicitly call the fclose function for each file.

Sometimes you may want to close a file and then open another using the same
file pointer. You can do this with an fclose, fopen sequence, or with freopen.

/∗
∗∗ ‘freopen’ closes the file with pointer ‘filep’ , and opens the
∗∗ file ‘filename’ with ‘type’ as for ‘fopen’ .
∗∗ It is equivalent to a call to ‘fclose’ followed by one to ‘fopen’ .
∗∗ The value of ‘filep’ is returned on success and NULL on failure.
∗/
FILE ∗
freopen(filename, type, filep)
char ∗filename;
char ∗type; /∗ as for ‘fopen’ ∗/
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

In practice, freopen is most often used to associate a file with the standard input,
output or error file pointers. For example, this code

if (freopen(" outfile" , " w" , stdout) == NULL)
{

fprintf(stderr, " cannot reopen stdout as outfile \n" );
exit(1);

}
tries to close stdout and then reopen it as the file called outfile in write mode.
Freopen can fail for the same reasons as fopen.

7.4.2  Character I/O on Files
We now show how to read and write characters from an arbitrary file. First, we
show the usual (and preferred) method which uses the macros getc and putc (in
stdio.h). Then we show you the equivalent functions fgetc and fputc. The
principal advantage of using macros is that you save the runtime overhead
associated with function calls.
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/∗
∗∗ ‘getc’ is a macro that reads a character from ‘filep’ .
∗∗ On success, it returns the character read.
∗∗ On error or end of file, it returns EOF.
∗/
int
getc(filep)
FILE ∗filep;

/∗
∗∗ ‘putc’ is a macro that writes the character ‘c’ onto ‘filep’ .
∗∗ On success, it returns the character written.
∗∗ On failure, it returns EOF.
∗/
int
putc(c, filep)
int c;
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

The disadvantage of using macros is that you must be careful of side effects (as we
discussed on page 000 of chapter 6). So code like this

result = putc(∗c++, filep); /∗WRONG ∗/
should be avoided and this is no hardship in normal uses you are likely to want to
make of getc and putc. You should make it a rule to use only simple arguments
for macros and with that proviso, it is generally better to use macros. Note that you
cannot tell that getc and putc are macros rather than true functions by examining
programs in which they are used; you simply have to know it.

Here is the program that copies standard input to standard output, this time
using getc and putc.
/∗
∗∗ copy standard input to standard output using ‘getc’ and ‘putc’ .
∗/

#include <stdio.h>

main()
{

int c;

while ((c = getc(stdin)) != EOF)
putc(c, stdout);

}
The true functions which do the same task are fgetc and fputc.
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/∗ ‘fgetc’ reads a character from ‘filep’ .
∗∗ On success, it returns the character read.
∗∗ On error or end of file, it returns EOF.
∗/
int
fgetc(filep)
FILE ∗filep;

/∗ ‘fputc’ writes the character ‘c’ onto ‘filep’ .
∗∗ On success, it returns the character written.
∗∗ On failure, it returns EOF.
∗/
int
fputc(c, filep)
int c;
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

Because input is automatically buffered, it is possible to re-read a character by
using the function ungetc followed by getc or fgetc.

/∗
∗∗ ‘ungetc’ places the character ‘c’ onto ‘filep’ .
∗∗ If ‘c’ was the last character read from ‘filep’ ,
∗∗ ‘ungetc’ effectively " unreads" the last character
∗∗ it read and the same character will be returned
∗∗ by the next call to ‘getc’ .
∗∗ On success, it returns the character.
∗∗ On failure, it returns EOF.
∗/
int
ungetc(c, filep)
int c;
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

Additional calls to ungetc take you further back in the buffer. However, you
cannot go back beyond the current buffer. So, if you have just read from a buffered
stream, you can only be certain of making one successful call to ungetc.

7.4.3  Other I/O on Files
Now we see two functions that are similar to gets and puts but these can deal with
any open file.
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/∗
∗∗ ‘fgets’ is a function that reads a string from ‘filep’ into ‘string’ .
∗∗ Normally, ‘fgets’ reads one line; this, including the ‘ \n’
∗∗ is placed in ‘string’ (unlike ‘gets’ ).
∗∗ The numbers of characters read is at most ‘n’ − 1.
∗∗ On success, it returns it argument ( ‘string’ ).
∗∗ On error or end of file, it returns NULL.
∗/
char ∗
fgets(string, n, filep)
char ∗string;
int n;
FILE ∗filep;

/∗
∗∗ ‘fputs’ is a function that writes ‘string’ onto ‘filep’ .
∗∗ Unlike ‘puts’ , it does not append a newline.
∗∗ EOF is returned on error.
∗/
int
fputs(string, filep)
char ∗string;
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

Note that the string size n needs to be large enough to accommodate the \0 at the
end of the string.

There are some important differences between gets and fgets. First, and most
obvious, is the fact that fgets allows you to specify both the maximum number of
characters and the name of the file pointer. Another important difference is that
gets removes the newline at the end of the string that it reads, while fgets keeps it.
This is easy to forget and it can be annoying. (The reason for this inconsistency is
compatibility with old versions of the Standard I/O function library!)

A corresponding relationship applies to fputs and puts: fputs writes a string
to a nominated file, but unlike puts it doesn’t append a newline character.

The fscanf and fprintf functions correspond exactly to scanf and printf: the
only difference is that a stream can be specified for the I/O operation.
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/∗
∗∗ see descriptions of ‘scanf’ and ‘printf’
∗/
int
fscanf(filep, format/∗ [, pointer] ...∗/)
FILE ∗filep;
char ∗format;

int
fprintf(filep, format/∗ [, arg] ...∗/)
FILE ∗filep;
char ∗format;

_____________________________________________________________________

_____________________________________________________________________

7.4.4  Formatting data to or from a memory area
The functions in this section allow you to reformat strings. These are not really I/O
functions but each has a matching I/O function that performs the same formatting
task. So, for example, sscanf interprets a string in a way that corresponds to
scanf’s interpretation of a string of characters on input. You will find sscanf
particularly useful where you want to read from input but cannot know the exact
format until you have analysed some of it: sscanf allows you to effectively reread
parts of a line that have been read into a string.

/∗
∗∗ ‘sscanf’ interprets the string according to the ‘format’ specification.
∗∗ On success, it returns the number of items matched and assigned
∗∗ (like ‘scanf’ ).
∗∗ On error or a string too short to match the ‘format’ , it reurns EOF.
∗/
int
sscanf(string, format/∗ [, pointer] ...∗/)
char ∗string;
char ∗format;

/∗
∗∗ ‘sprintf’ formats data in a similar way to ‘printf’ except that
∗∗ the output is placed in the memory area pointed to by ‘buffer’ .
∗∗ For System V UNIX ‘sprintf’ returns the number of characters
∗∗ of output (excluding the ’ \0’ character at the end).
∗∗ Other versions of ‘sprintf’ may be of type char and return ‘buffer’ .
∗/
int
sprintf(buffer, format/∗ [, arg] ...∗/)
char ∗buffer;
char ∗format;

_____________________________________________________________________

_____________________________________________________________________

Unfortunately the value returned by the sprintf function varies according to the
particular version of UNIX being used. On UNIX System V the number of
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characters stored in the area is returned, which is like printf, except that sprintf puts
a \0 character at the end of the string and does not include it in the count. On some
other versions of UNIX the first argument is returned.

Sometimes it is convenient to interpret a string as a single integer or floating
point number. The following functions enable you to do this.

/∗
∗∗ ‘atoi’ converts ASCII characters in ‘string’ to an int.
∗∗ It returns the integer interpretation of the string.
∗∗ It stops analysing the string on the first non−digit character.
∗/
int
atoi(string)
char ∗string;

/∗
∗∗ ‘atof’ is similar to ‘atoi’ except that it converts characters to a float.
∗/
float
atof(string)
char ∗string;

/∗
∗∗ ‘atol’ is similar to ‘atoi’ except that it converts characters to a long.
∗/
long
atol(string)
char ∗string;

_____________________________________________________________________

_____________________________________________________________________

The argument to each of these functions is a pointer to an ASCII string. The string
is scanned and the result (int, float or long) returned as the result of the function.
The first unrecognised character terminates the scan.

We can view the functions treated in this section as doing string manipulation
operations or we can view them as doing I/O-like operations on strings that are in
memory rather than on an I/O stream.

7.4.5  Binary I/O
Binary I/O means I/O (either on memory or a file) without interpreting the bit
pattern as an ASCII character sequence. A common use for binary I/O is in reading
or writing files of structures (especially when reading or writing more than one
structure at a time).
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/∗
∗∗ ‘fread’ reads ‘number’ items of ‘size’ bytes into ‘area’ from ‘filep’ .
∗∗ It returns the number of items read.
∗∗ On error or end of file, it returns zero.
∗/
int
fread(area, size, number, filep)
char ∗area;
int size;
int number;
FILE ∗filep;

/∗
∗∗ ‘fwrite’ writes ‘number’ items of ‘size’ bytes from ‘area’ to ‘filep’ .
∗∗ It returns the number of bytes written.
∗∗ On error or end of file, it returns zero.
∗/
int
fwrite(area, size, number, filep)
char ∗area;
int size;
int number;
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

Note that the first argument must be a char ∗ since we think of these functions as
dealing with bytes of data. Where you are actually dealing with structures or some
other type, you need to cast them to char ∗. We illustrate how to use fread and
fwrite to read and write a file of structures on page 000.

7.4.6  File Positioning
All the preceding sections have presumed that you read a file strictly in sequential
order. You can also read or write a file by seeking a particular position in it and
doing I/O from that point. The fseek function positions a file at the specified
number of bytes from the beginning, the current position or the end. It is generally
used in conjunction with ftell which returns the current position in a file in terms of
the number of bytes from the beginning. Typically, you might scan through a file,
keeping a collection of values, each of which corresponds to some point of interest.
Then you use fseek to move to any one of these points as required.

So a typical form for code that reads a file in other than sequential order is like
this.

fseek(dbfile, (long)myrec, 0); /∗ position ‘dbfile’ at ‘myrec’ ∗/
fread(data, RECSIZE, 1, dbfile);
...
fseek(dbfile, 0L, 0); /∗ position ‘dbfile’ at the beginning ∗/

We move to the point in the file, myrec bytes from the beginning. Since this
argument must be a long, we needed the cast in our code. With the third argument
set to zero, the offset is myrec bytes from the beginning of the file. Having
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reached that position, we read the record at that point in the file using fread. Then
we position dbfile at its beginning. In general you can also specify positions as
offsets from the current position or the end of the file, but always with a long
argument.

/∗
∗∗ ‘fseek’ moves to ‘position’ bytes offset in ‘filep’ .
∗∗ ‘from’ indicates ‘position’ is offset from
∗∗ 0 beginning
∗∗ 1 current position
∗∗ 2 end of file
∗∗ On error, it returns −1.
∗/
int
fseek(filep, position, from)
FILE ∗filep;
long position;
int from;

_____________________________________________________________________

_____________________________________________________________________

You can seek the end of a file with
...
fseek(dbfile, 0L, 2); /∗ position ‘dbfile’ at end of file ∗/
...

Once you have reached a position to which you may need to return, you can use
ftell.

/∗
∗∗ ‘ftell’ returns the current file position, in bytes from
∗∗ the beginning of ‘filep’ .
∗/
long
ftell(filep)
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

It returns the position as a long that can be used later in a call to fseek.

7.4.7  File status
Many of the I/O functions described so far can return an end of file or error
indication. You can check for these conditions independently with the following
tests (which are actually macros).
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/∗
∗∗ ‘feof’ returns non−zero (true) when end of file
∗∗ has been read on ‘filep’ .
∗∗ Otherwise, it returns zero.
∗/
int
feof(filep)
FILE ∗filep;

/∗
∗∗ ‘ferror’ returns non−zero (true) when there has been an error while
∗∗ reading or writing on ‘filep’ . Otherwise, it returns zero.
∗/
int
ferror(filep)
FILE ∗filep;

/∗
∗∗ ‘clearerr’ resets the error indicators.
∗/
void
clearerr(filep) /∗ reset error condition ∗/
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

The clearerr function is the only way to clear an error condition. You use it
when you want to continue in spite of an error. If you do not use it, the error
condition remains set for subsequent I/O operations and future calls to ferror are
meaningless.

7.4.8  Pipes
As we noted in the introductory section on I/O, the pipe is one of the most powerful
features of UNIX. From the point of view of a program, a pipe looks like any other
file except that the functions used to open and close it are different. For example,
the following code fragment reads and processes lines containing the string unix
from all the files in the current directory.
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FILE ∗p; /∗ pipe stream ∗/
char line[MAXLINE]; /∗ lines read ∗/

if ((p = popen(" grep unix ∗" , " r" )) == NULL)
{

fprintf(stderr, " cannot create pipe \n" );
exit(1);

}

while (fgets(line, sizeof line, p) != EOF)
/∗ do something with ‘line’ ∗/
...

pclose(p); /∗ close the pipe ∗/
In the while loop, we read from the pipe with file pointer p just as we read from
any file. The popen call differs from a call to fopen in that its first argument is a
string containing a normal shell command. The ouput of this command is the input
to the pipe.

In general, popen invokes a program and creates a pipe to the standard input
or output of that program.

/∗
∗∗ ‘popen’ opens a pipe to the shell command pointed to by ‘command’
∗∗ in the mode specified by ‘type’ where:
∗∗ " r" is for read mode
∗∗ " w" is for write mode.
∗∗ It returns a file pointer to the pipe.
∗∗ If the shell cannot be accessed or the files or processes
∗∗ cannot be created, it returns −1.
∗/
FILE ∗
popen(command, type)
char ∗command;
char ∗type;

_____________________________________________________________________

_____________________________________________________________________

The corresponding function to close a pipe is pclose.

/∗
∗∗ ‘pclose’ closes the pipe file ‘filep’ .
∗∗ On success, it returns the exit status of the shell command.
∗∗ If the file was not opened by ‘popen’ , it returns −1.
∗/
int
pclose(filep)
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

A normal shell command is used to specify the program to be invoked and the
command can have any of the usual shell metacharacters. Your program can pipe
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data into a file (in which case it must be open for writing) or you can use the pipe to
get input as we did in our sample program.

7.4.9  Buffer Control
In general, it is more efficient to buffer I/O so that data is read or written in a
smaller number of large blocks. This is because each I/O operation requires one
system call. Our getchar version of the copy program on page 000 is inefficient
because every character requires one system call to read and another one to write.
Had we buffered stdin and stdout, the Standard I/O functions would have used one
system call per buffer read and one for each buffer written. Given a typical buffer
of 512 characters this could mean a 512 to 1 reduction in system calls.

Some file streams are not buffered. These are normally the ones associated
with your terminal. So when stdin, stdout and stderr are attached to your
terminal, it would be irritating and impractical to buffer them: output on stdout or
stderr should appear immediately and if they were buffered, output would not
appear until the buffer was full. Similarly, you normally want input on stdin to be
available immediately rather than having to wait until a complete buffer is
available.

The Standard I/O functions do buffering on your behalf in an almost
transparent manner. They check (using the stat function) if the file is attached to a
terminal and if so, the file is not buffered.

It is important to close files (using fclose) as this ensures that any data left in
the buffers is written to the file.

Here is an example program with setbuf used to indicate buffering on stdout.
/∗
∗∗ copy standard input to standard output using ‘getc’ and ‘putc’ .
∗∗ ‘stdout’ is buffered.
∗/
#include <stdio.h>

char outbuf[BUFSIZ];

main()
{

int c;

setbuf(stdout, outbuf);

while ((c = getc(stdin)) != EOF)
putc(c, stdout);

}
We have declared a global buffer area outbuf and set its size with the defined
constant BUFSIZ. Our call to setbuf establishes outbuf as the buffer to be used for
stdout. You will generally make buffers global: if you declare one within a
function other than main, you should close the file before the function completes
because the stack space that the buffer occupies will typically be reused.

The functions, setbuf and fflush enable you to override the default buffering,
setbuf specifying that buffering is to occur even for a stream that is normally
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unbuffered.

/∗
∗∗ ‘setbuf’ indicates buffering is to occur on ‘filep’
∗∗ using the buffer ‘buf’ .
∗∗ When ‘buf’ is NULL, it indicates no buffering.
∗/
void
setbuf(filep, buf)
FILE ∗filep;
char ∗buf;

_____________________________________________________________________

_____________________________________________________________________

The buffer pointed to by buf can be set to BUFSIZ, a constant in stdio.h.
Even when you use setbuf to establish buffered I/O, you may want to flush the

buffer. For example, if your program writes some control characters to a screen to
make some parts appear as flashing text, you need to use fflush on the output
stream to ensure that the screen change is effected immediately.

/∗
∗∗ ‘fflush’ flushes the buffer for ‘filep’ (which remains open).
∗∗ Where ‘filep’ is not opened for writing or the flush otherwise fails,
∗∗ it returns EOF.
∗/
int
fflush(filep)
FILE ∗filep;

_____________________________________________________________________

_____________________________________________________________________

7.5  System call I/O
In this section, we treat the system call level of I/O functions. You should have
read about the standard I/O functions in the last section and you will observe the
similarity in behaviour between some of the standard I/O functions and system call
I/O. The relationship between the two is illustrated in Figure 7.2.
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Figure 7.2. How standard I/O and System Call I/O functions interact.
It shows what happens when a program calls a function like fopen from the
standard I/O library. First fopen arranges buffering and the like and then calls the
system call I/O function open which sets up arguments appropriately and does a
system call. Finally, the system manages the primitive disk functions required to
open a file. There is also a flow of status information back up to the calling
program.

In general, you should not intersperse standard I/O and system call I/O
functions for, say reading, from a single file. Each has different ways of dealing
with the file and if you are not careful, you could create a dreadful mess. For
example, the standard I/O function may do buffering and so, a standard I/O read
followed by a system call I/O read could make it seem as though you have jumped
through the file.

In general, system call functions are written in assembler and massage their
parameters before executing a system call instruction that causes the UNIX
operating system kernel to perform the actual I/O operation. (The kernel is the
essential core of code in the UNIX operating system and it does tasks like
managing memory, I/O devices and the file system.) The kernel returns control to
the function which returns status information to the calling C program as illustrated
in Figure 7.2. At the system call level, there are typically 60 to 70 UNIX calls. (The
actual number depends on the version of UNIX.)

Because the functions treated in this section are low level, we rely more
heavily on your knowledge of UNIX. You might just skim the whole of this
section on a first reading. Some of the functions in this section are lower level or
primitive forms on which standard functions are built. However, others, including
most of the file status and control commands are used in their own right.
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Overview of UNIX concepts used in this section
In this section, we give a very brief overview of the organisation of the UNIX file
system and the access modes associated with a file. This overview is terse and you
may want to read a book on UNIX (see the Bibliography) for more information.

The UNIX file system is organised in a hierarchy, with the top node or root of
the tree having a number of directories that are common to most UNIX systems.
These include /bin and /usr/bin where many command binaries are kept.
Directories can contain files or other directories. You can specify a filename in
terms of its full pathname , starting from the root directory. Alternatively, you can
use a shorter form of filename by stating it relative to the current directory, which
is set to your HOME directory when you log in and can be altered with the cd shell
command.

When you create a new file, the system creates a link to it. You can create
additional links which act as aliases for the file. To remove a file, you have to
remove all the links to it.

An important aspect of the file system is the control of file access. UNIX
defines three forms of access to a file: read , write and execute. Read access to a
file or directory means being allowed to see its contents. Write access allows
modifications to it and execute permission allows the execution of the file as a
program or, in the case of a directory, access to files within it. There are also three
classes of users whose access to a file is defined as an attribute of the file: the
owner , the group and others . Each file has a user identifier, uid , associated with it
and that uid defines the user who owns the file. Similarly, a file has a group
identifier, gid , and all the members in that group have the group access privileges
for the file. The file access allowed for everyone else is defined by the ‘others’
access mode.

The access mode is generally viewed as a sequence of bits as follows:
ttttsssuuugggooo

where the tttt bits give the type of the file, the sss bits indicate if the file is setuid
(which means that when this file is executed, the effective uid becomes the uid of
the user that owns the file), setgid (similar to setuid but for the group of the owner)
and the sticky bit (indicating that the executable image of the program should be
saved in the swap area for rapid execution in the future). The permission bits
(uuugggooo) consist of three fields each of three bits. These indicate the three
access permissions for each of the following: the owner of the file; users within the
group that owns the file and finally, all users. The three bits within each field
indicate if the file can be read, written or executed.

Overview of process ownership in UNIX
Processes, like files, each have an individual owner and a group owner. This means
that UNIX associates a user id (uid) and a group id (gid) with each process and the
process can act with the privileges associated with that user and group. So, for
example, a process that you own can access files that you are entitled to access.
When you start a program (or process), it is associated with your uid and gid.

Now, some programs are described as setuid which means that no matter who
starts them running, they take on a different effective uid. There are many setuid
programs you can run where the program has a real uid (yours) and a different
effective uid that enables the program to do operations allowed for that uid but not



-- --

174 C in the UNIX Environment

for yours. For example, as an ordinary user, you cannot create a directory but you
can run mkdir which sets its effective uid to that of the superuser (also called root)
who is able to create a directory. We concentrate on the C to UNIX interface as
most programmers use it: superusers need considerable knowledge about system
maintenance and other UNIX matters that are not related particularly to C
programming.

7.5.1  Error Handling and System Calls
When an error occurs in a system call, the UNIX system call functions usually
return a value of −1. A more useful error code number is also returned in the
external variable errno, which is used by perror as in the following code.

if ((fd = open(" datafile" , 0)) == −1)
{

perror(" datafile" );
exit(1);

}
which might cause the following error message to be printed

datafile: No such file or directory
In general, this code deals with an error on using open by printing an error
message of this form.

file-name: error-message-text

The argument to perror, in this case the file name, is printed first and then perror
prints one of the standard error message strings. The defined values that make all
this work are:

sys_errlist an array of pointers to error message strings (in errno.h)
sys_nerr the number of values in sys_errlist
errno error value that is used as an index into sys_errlist

The full range of values that errno can take is documented in the UNIX manual
entry intro(2).

The function perror prints on the standard error file.

/∗
∗∗ ‘perror’ prints ‘message’ followed by a text describing the error
∗∗ as set in ‘errno’ .
∗/
void
perror(message)
char ∗message;

_____________________________________________________________________

_____________________________________________________________________

7.5.2  Primitive I/O
The primitive I/O system calls can open, close, read and write files. Unlike the
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standard I/O functions, they do not format or buffer the data for you. They also
manipulate directories, get file status, change permission information and perform
device-specific control operations.

Like the Standard I/O package, I/O system calls require that a file be open
before it is used. Where the Standard I/O package uses file pointers , I/O system
calls use small integer file descriptors .

/∗
∗∗ ‘open’ opens ‘filename’ in the ‘mode’ defined where:
∗∗ 0 = read
∗∗ 1 = write
∗∗ 2 = read/write
∗∗ On success, it returns file descriptor.
∗∗ On failure, it returns −1.
∗/
int
open(filename, mode)
char ∗filename;
int mode;

_____________________________________________________________________

_____________________________________________________________________

Normally your program begins execution with standard input, output and error
files open and available for use. Their file descriptors are always

standard input 0
standard output 1
standard error 2

Once you have a file descriptor for a file, either from open or from one of the
standard files, you can read or write data using the read or write functions.
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/∗
∗∗ ‘read’ reads ‘count’ bytes into ‘buffer’ from file with
∗∗ descriptor ‘filedesc’
∗∗ On success, it returns the number of bytes actually read.
∗∗ On end of file, it returns 0.
∗∗ On error, it returns −1.
∗/
int
read(filedesc, buffer, count)
int filedesc;
char ∗buffer;
int count;

/∗
∗∗ ‘write’ writes ‘count’ bytes from ‘buffer’ onto file with
∗∗ descriptor ‘filedesc’
∗∗ On success, it returns the number of bytes actually written.
∗∗ On error, it returns −1.
∗/
int
write(filedesc, buffer, count)
int filedesc;
char ∗buffer;
int count;

_____________________________________________________________________

_____________________________________________________________________

Here is our familiar file copy program again, this time using the read and write
system calls.
/∗
∗∗ copy standard input to standard output
∗∗ using ‘read’ and ‘write’ system calls
∗/

main()
{

char buf[BUFSIZ];
int count;

while ((count = read(0, buf, BUFSIZ)) > 0)
write(1, buf, count);

}
This is a very efficient way to copy standard input to standard output because it
uses the standard sized buffer, BUFSIZ and avoids the extra function call overhead
of the standard I/O functions.

When a file is no longer needed it should be closed using close.
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/∗
∗∗ ‘close’ closes the file with descriptor ‘filedesc’ .
∗∗ On success, it returns 0.
∗∗ If the file descriptor is unknown, it returns −1.
∗/
int
close(filedesc)
int filedesc;

_____________________________________________________________________

_____________________________________________________________________

Although the open function opens an existing file for I/O, to create a new file,
you need to use the creat (sic) function.

/∗
∗∗ ‘creat’ creates a file with the name ‘filename’ with the
∗∗ ‘access_mode’ specified where the ‘access_mode’ defines
∗∗ user, group or public access.
∗∗ On success, it returns a file descriptor.
∗∗ On failure, it returns −1.
∗/
int
creat(filename, access_mode)
char ∗filename;
int access_mode;

_____________________________________________________________________

_____________________________________________________________________

The file is created and opened for writing. (It would make no sense to open a new
file for reading.)

As well as creating files, you can remove them using unlink. This function
removes a single named link to the file. Of course, the file does not disappear if
there are other links to it.

/∗
∗∗ ‘unlink’ removes a link to a file called ‘filename’ .
∗∗ On success, it returns 0.
∗∗ On failure, it returns −1.
∗/
int
unlink(filename)
char ∗filename;

_____________________________________________________________________

_____________________________________________________________________

7.5.3  Temporary File Names
Programs often need files just for the life of the program. In general purpose
programs you normally create such temporary files in /tmp but since many users
create temporary files in this directory, you can fail in an attempt to create a file
there because its name already exists. You can avoid this by using mktemp to
create unique names for temporary files as in this example.
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char ∗tmpname = " /tmp/mineXXXXXX" ;
...
if ((tmpf = creat(mktemp(tmpname),mode)) == −1)
{

perror(progname);
exit(1);

}
This generates a file in /tmp with a name that starts with mine and has a generated
end. Our test covers the unlikely situation that the filename created is not unique
(because someone happened to choose the same name as mktemp generated). It is
very unlikely (but not impossible) that another file of that name exists in the /tmp
directory.

/∗
∗∗ ‘mktemp’ takes a string, ‘template’ , that ends in six X’ s and
∗∗ returns it with the X’ s replaced by the program’ s
∗∗ process number and a unique letter.
∗/
char ∗
mktemp(template)
char ∗template;

_____________________________________________________________________

_____________________________________________________________________

7.5.4  Positioning
You can alter the point in the file at which the next read or write operation takes
effect, using the lseek system call.

/∗
∗∗ ‘lseek’ sets the read/write position of the file with descriptor ‘fd’ .
∗∗ The position is defined by the ‘from’ :
∗∗ 0 ‘offset’ bytes from the start of the file.
∗∗ 1 ‘offset’ bytes from the current position.
∗∗ 2 ‘offset’ bytes from the end of the file.
∗∗ On success, it returns the new position value.
∗∗ On failure, it returns −1.
∗/
long
lseek(fd, offset, from)
int fd;
long offset;
int from;

_____________________________________________________________________

_____________________________________________________________________

As with the standard I/O function, fseek, the position can be set relative to the
current position, the beginning of the file or the end of the file and the offset is a
long integer as this code illustrates.
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lseek(fd, 0, 0); /∗WRONG way to seek to beginning of file ∗/

lseek(fd, 0L, 0); /∗ CORRECT ∗/

7.5.5  Interface with the Standard I/O package
Although there are dangers in mixing system call I/O with calls to the standard I/O
functions, it is sometimes unavoidable. In that case, you need to use fileno to get
the file descriptor used by a particular file pointer and fdopen to associate a new
file pointer with a given file descriptor.

/∗
∗∗ ‘fileno’ is a macro that returns a file descriptor for a file
∗∗ with file pointer ‘filep’
∗/
int
fileno(filep)
FILE ∗filep;

/∗
∗∗ ‘fdopen’ returns a file pointer for an existing, open file
∗∗ with descriptor ‘filedesc’
∗∗ The ‘mode’ must agree precisely with that used to open the file.
∗/
FILE ∗
fdopen(filedesc, mode)
int filedesc;
char ∗mode;

_____________________________________________________________________

_____________________________________________________________________

7.5.6  Pipes
We have already met the standard I/O function, popen. A pipe may be thought of
as a file that is created by a program and disappears when it is closed. Although
pipes are managed by the UNIX file system, they do not have a directory entry like
proper files and they are never saved on disk: they are used purely for
communication between programs.

A pipe has two ends and so the pipe system call returns two file descriptors,
one for each end. One file descriptor is used for writing data into the pipe and the
other for reading data from the pipe.
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/∗
∗∗ ‘pipe’ creates a pipe with file descriptors ‘fd[0]’ and ‘fd[1]’ .
∗∗ Data written into ‘fd[1]’ can be read from ‘fd[0]’ .
∗∗ ‘pipe’ returns 0 if the pipe was created, −1 if not.
∗/
int
pipe(fd)
int fd[2];

_____________________________________________________________________

_____________________________________________________________________

You may wonder why a program should need a pipe to talk to itself. In fact,
one program can start another one running using the fork and exec system calls
(described later) and the pipe file descriptors are inherited by the new program.
Data can then be sent between the parent and child programs. We illustrate this in
the section on exec, where we give an example of the use of pipe (page 000).

7.5.7  File Status and Control
The UNIX file system has a consistent structure that allows ordinary files,
directories and device files to be handled in the same way. Each entry in the file
system has a data structure associated with it and this is called an information node
or inode . This contains information about its type, owner, size and location on
disk. If the inode refers to a file that has an I/O device driver associated with it, the
field normally used for the disk location is used to indicate which device driver is
used when accessing the file. Information from the inode for a particular file is
given by the stat system call.

#include <sys/types.h>
#include <sys/stat.h>

/∗
∗∗ ‘stat’ places information about ‘filename’ in area
∗∗ pointed to by ‘status’ .
∗∗ On success, it returns 0.
∗∗ If the file cannot be found, it returns −1.
∗/
int
stat(filename, status)
char ∗filename;
struct stat ∗status;

_____________________________________________________________________

_____________________________________________________________________

The fstat function can be used when the filename is unknown but the file is open.
The file descriptor is the number returned from an open, creat, pipe or fileno
operation.
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/∗
∗∗ ‘fstat’ places information about an open file with
∗∗ descriptor ‘filedesc’
∗∗ in the area ponted to by ‘status’ .
∗∗ On success, it returns 0.
∗∗ If the file cannot be found, it returns −1.
∗/
int
fstat(filedesc, status)
int filedesc;
struct stat ∗status;

_____________________________________________________________________

_____________________________________________________________________

The user must provide a pointer to an area into which the information about
the file is placed. This structure is declared in sys/stat.h and this declaration in
turn requires declarations of a number of types, which are in sys/types.h. The
#include lines shown above in the description of stat ensure inclusion of the
necessary declarations in your program. Here is the declaration of the structure
stat.
struct stat
{

dev_t st_dev; /∗ device numbers ∗/
ino_t st_ino; /∗ inode number ∗/
ushort st_mode; /∗ type and permission ∗/
short st_nlink; /∗ number of links ∗/
ushort st_uid; /∗ owner’ s user ID ∗/
ushort st_gid; /∗ owner’ s group ID ∗/
dev_t st_rdev; /∗ device numbers ∗/
off_t st_size; /∗ size in bytes ∗/
time_t st_atime; /∗ last accessed time ∗/
time_t st_mtime; /∗ last modified time ∗/
time_t st_ctime; /∗ time created ∗/

};
The definitions of the types are machine dependent which is why they are in a
separate include file (sys/types.h). We now discuss fields of stat that need
elaboration.

The st_mode element of the structure contains information about the file type
and access permissions. The individual parts of st_mode can be extracted using
shifting and masking operations and appropriate masks are usually defined in
sys/stat.h.

The st_ctime, st_atime and st_mtime elements give the time of creation, last
access and modification of the file as the number of seconds past 00:00 GMT
January 1st 1970. This is the base time that is used throughout UNIX and you can
manipulate it easily using the localtime or ctime functions described in the ‘Time
of day’ section of this chapter (page 000).

The st_nlink element gives the number of links to this file. UNIX directory
files contain a list of file names and their associated inode numbers. One file can
have several links which means that it has entries in several directories. Since, each
call to unlink removes only one directory entry (link), a file doesn’t actually
disappear until all links have been removed and the link count in the inode is
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reduced to zero.
A new link to an existing file can be created using link.

/∗
∗∗ ‘link’ creates a new link name, ‘newfile’ , for a file
∗∗ named ‘origfile’ .
∗∗ On success, it returns 0.
∗∗ On failure, it returns −1.
∗/
int
link(origfile, newfile)
char ∗origfile;
char ∗newfile;

_____________________________________________________________________

_____________________________________________________________________

After creating a new link (using link), the link count in the inode for the file
increases.

A normal unprivileged user program cannot directly create or alter directories
and inodes. File access permissions can be changed with chmod (for change
mode).

/∗
∗∗ ‘chmod’ changes the ‘access_mode’ bits for the file ‘filename’ .
∗∗ On success, it returns 0.
∗∗ On failure, it returns −1.
∗/
int
chmod(filename, access_mode)
char ∗filename;
int access_mode;

_____________________________________________________________________

_____________________________________________________________________

You can alter some of the access mode bits (and others can be altered only by root.)
You would normally only be interested in changing the permission bits to allow or
deny access to the file. You do this in much the same way that you use the UNIX
command chmod. A typical set of permissions can be established with the
following code

...
chmod(" myprog" , 0751);
...

which sets the access modes for myprog with the octal constant 0751. The octal
digit 7 has all three bits set and so it defines the owners access as readable, writable
and executable. The next set of three access mode bits is set to 101 (5 octal),
making myprog readable and executable for members of its group. Finally, the
lowest digit has only the execute bit set so that the file is only executable by
everyone else.

The creat function also has an access_mode argument. The actual
access_mode value used when creating the file is the logical AND of the supplied
mode with the negation of the mask that the system maintains for each user. This
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mask is initially set to zero when a user logs on to the system but may be changed
with the command umask or from within a C program using the umask function.

/∗
∗∗ ‘umask’ sets ‘mask’ as the user’ s new mask and
∗∗ returns the previous mask value.
∗∗ The initial mask value is 0.
∗/
int
umask(mask)
int mask;

_____________________________________________________________________

_____________________________________________________________________

To determine if a given file is accessible to your program you can use stat and
examine the mode bits. (With knowledge of the uid and gid of the program at that
point in execution you can tell if the file in question can be read, written or
executed by your program.) Or you can simply use the access function.

/∗
∗∗ ‘access’ checks for ‘access_mode’ specified on ‘filename’ .
∗∗ When that access is allowed, it returns 0.
∗∗ When that access is denied, it returns −1.
∗/
int
access(filename, access_mode)
char ∗filename;
int access_mode;

_____________________________________________________________________

_____________________________________________________________________

The three least significant bits of the mode argument indicate the access
permission required. As in the case of chmod’s access modes the binary value 100
indicates read access, 10 write access and 1 execute access and combinations of
these values are allowed.

The access function is particularly useful when the effective uid and gid are
not the same as the real uid and gid because access checks for accessibility using
the real uid or gid. (Note that, normally, both the effective and real id are the same.
However, a file can have its setuid bit set. Then, any user who invokes it has an
effective uid set to that of the file’s owner, whilst their real uid remains
unchanged.)

Each executing program in a UNIX system has a current directory. File
names that do not begin with a / are interpreted relative to this directory. This is
equivalent to prepending file names used within your program with the full path
name for the current directory and a /. For example, if your current directory was
/usr/kim, then an attempt to open the file mydata actually opens the file
/usr/kim/mydata. When a user first logs in, the current directory is set to their
HOME or login directory. The current directory can be changed with the cd
command to the shell or the chdir function within a C program.
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/∗
∗∗ ‘chdir’ change current directory to ‘dirname’ .
∗∗ If the change is successful, it returns 0.
∗∗ Otherwise, it returns −1.
∗/
int
chdir(dirname)
char ∗dirname;

_____________________________________________________________________

_____________________________________________________________________

When a file is created or opened by a program, the system internally allocates
a data structure and returns the associated file descriptor. The data structure
maintains the current position within the file. This can cause some problems if the
program forks (see page 000) since there would then be two programs each using
the same file descriptor and this could cause confusion about the position of the
file. The problem is avoided by the creation of another copy of the data structure
and a new file descriptor. So the two programs can be at different positions within
the same file. The dup function creates a new copy of the data structure and
associated file descriptor.

/∗
∗∗ ‘dup’ duplicates the file descriptor, ‘filedesc’ .
∗∗ On success, it returns the new file descriptor.
∗∗ On failure, it returns −1.
∗/
int
dup(filedesc)
int filedesc;

_____________________________________________________________________

_____________________________________________________________________

7.5.8  Device Control
So far we have described operations on files without reference to physical devices.
This has been possible because the UNIX file system presents a consistent view of
a file as a linear stream of bytes. There is no record structure and files are
independent of the physical device used to store them. So files may be stored on a
range of disk storage devices of different sizes and physical structures and users
need not be aware of how or where the system keeps their files.

In addition, the UNIX file is the interface to physical devices such as tape
drives and terminals. From the point of view of your program these devices are
accessed in exactly the same way as normal files: they have an entry in a directory,
permission bits like any other file and the system calls open, close, read and
write are used to access them. However, some devices may require additional
control. For example, a tape drive may need rewinding or a terminal may require a
particular communication baud rate. The ioctl system call permits this.
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/∗
∗∗ ‘ioctl’ performs a device specific operation with code ‘request’
∗∗ on the device with file descriptor ‘fd’ and with a pointer
∗∗ to the required parameters, ‘reqparams’ .
∗∗ ‘request’ and ‘reqparams’ depend on the device being controlled.
∗∗ If an error occurs the value −1 is returned.
∗/
int
ioctl(fd, request, reqparams)
int fd;
int request;
struct req ∗reqparams;

_____________________________________________________________________

_____________________________________________________________________

For example, communication lines have a number of changeable parameters
including line speed, line parity, type of delay needed for certain control characters,
upper to lower case character mapping and character echo. A set of useful
definitions of requests and of the reqparams structure is found in a system include
file. (On some systems it is sgtty.h, on others termio.h) The following example
changes the speed of a communication line to 1200 baud.
#include <sgtty.h>

struct sgttyb tty;
...
ioctl(fd, TIOCGETP, &tty); /∗ get the line parameters ∗/
tty.sg_ispeed = tty.sg_ospeed = B1200; /∗ change speed to 1200 baud ∗/
ioctl(fd, TIOCSETP, &tty); /∗ set the new parameters ∗/
...

The declaration of the structure sgttyb and definitions of the symbols TIOCGETP,
TIOCSETP and B1200 are all in sgtty.h. A complete description of these is in tty(4).

7.6  Storage Allocation
We have already described the heap, a storage space that is dynamically allocated at
runtime (page 000 in Chapter 5). It is managed by the standard functions, malloc,
calloc, realloc and free. Typically, the allocation uses a first fit algorithm.
Although these functions reallocate blocks that have been freed and merge adjacent
free blocks, they do no garbage collection or compaction.
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/∗
∗∗ ‘malloc’ allocates ‘size’ bytes on the heap.
∗∗ On success, it returns a pointer to the allocated memory.
∗∗ If there is insufficient memory available, it returns (char ∗)0.
∗/
char ∗
malloc(size)
unsigned int size;
/∗
∗∗ ‘calloc’ allocates ‘number’ elements each of ‘size’ bytes
∗∗ on the heap and initialises the memory to zero.
∗∗ On success, it returns a pointer to the allocated memory.
∗∗ If there is insufficient memory available, it returns (char ∗)0.
∗/
char ∗
calloc(number, size)
unsigned int number;
unsigned int size;

_____________________________________________________________________

_____________________________________________________________________

There are two differences between malloc and calloc. Firstly, malloc is
called with a single argument giving the size of the data area in bytes to be allocated
where calloc accepts a count of the number of elements to be allocated storage and
the size of each. Secondly, calloc clears the memory that it allocates where malloc
does not. Typically, calloc is used where memory is to be allocated for structures
or when it is important for memory to be initialised to zero.

/∗
∗∗ ‘realloc’ allocates space on the heap for the data in ‘ptr’
∗∗ in ‘size’ bytes.
∗∗ On success, it returns a pointer to the allocated area.
∗∗ If necessary, it copies the data in the relocation process, and
∗∗ in that case, the old pointer ‘ptr’ is no longer useful.
∗∗ If there is insufficient memory available, it returns (char ∗)0.
∗/
char ∗
realloc(ptr, size)
char ∗ptr;
unsigned int size;

_____________________________________________________________________

_____________________________________________________________________

To deallocate an area previously allocated with these functions, free is called
with a pointer to the area to be freed.
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/∗
∗∗ ‘free’ deallocates the memory accessed by ‘ptr’ .
∗∗ This memory must have been previously allocated by ‘malloc’ ,
∗∗ ‘calloc’ or ‘realloc’ .
∗/
void
free(ptr)
char ∗ptr;

_____________________________________________________________________

_____________________________________________________________________

As we noted in Chapter 5, it is critical that you check the value returned by the
allocation functions. Failure to do so can produce insidious errors. If available
memory is exceeded, a zero pointer is returned by the allocation functions and
using a zero pointer gives unpredictable results. So we use salloc and srealloc,
safer versions of malloc and realloc as shown on pages 000 and 000 of Chapter 5.

Also, you commonly need to allocate space for structures. Since malloc and
salloc return a pointer to a character, you must cast their result to a pointer to your
structure. The following preprocessor macro is very convenient for this.
#define talloc(type) (type ∗)salloc(sizeof (type))
Then, to allocate space for a structure you need only invoke talloc with the type of
the structure, as in this example.

struct datanode
{
...
} ∗oldptr, ∗newptr;
...
newptr = talloc(struct datanode);
...

A common bug involves exceeding the space allocated for a block. In particular,
you should take care to allow for the terminating \0 character when allocating space
for a string. Otherwise, a string that is copied to the allocated area overwrites the
first byte past the end of the block. The allocation technique used by malloc and
calloc places pointers to other blocks just after and just before each block. If a
block is overfilled these pointers are overwritten and further allocation or
deallocation causes havoc.

The storage allocation algorithm used by these functions may not make the
best use of memory for particular applications. Many other algorithms exist, one of
which may be more appropriate for your program. (If you are interested in this
area, see the paper by D.G. Korn and K.P. Vo in the Bibliography.)

7.7  String Handling
In our treatment of strings in chapter 5, we observed that C does not have a string
data type. However, using a pointer to an area of memory containing ASCII
characters and the appropriate library functions, you can do powerful string
handling. By convention, a C string is a sequence of characters terminated by a
null character (\0). A string is manipulated using a pointer to the first character of
the sequence.



-- --

188 C in the UNIX Environment

We have already described, (in the section on formatted I/O) some of the
string handling functions: sscanf and sprintf can be used to scan and generate
strings in a memory area. Here we describe a toolkit of string functions including
those that find the length of a string, concatenate, copy or compare strings. These
functions do not allocate storage for the parameter strings or the result string; they
operate on preallocated areas only.

String Length
A function that gives the length of a string is simple but very useful.

/∗
∗∗ ‘strlen’ returns the length of ‘string’
∗/
int
strlen(string)
char ∗string;

_____________________________________________________________________

_____________________________________________________________________

Note that the length value returned is the number of characters in the string
excluding the terminating \0.

Copying Strings
The functions strncpy and strcpy copy a string from a source area to a destination
area (which must have already been allocated).

/∗
∗∗ ‘strncpy’ copies at most ‘count’ characters from ‘src’ to ‘dest’ .
∗∗ The characters counted include the terminating ’ \0’ .
∗∗ It returns a pointer to ‘dest’ .
∗/
char ∗
strncpy(dest, src, count)
char ∗dest;
char ∗src;
int count; /∗ This should not exceed size of destination area ∗/

/∗
∗∗ ‘strcpy’ copies ‘src’ string to ‘dest’ .
∗∗ It returns a pointer to ‘dest’ .
∗/
char ∗
strcpy(dest, src)
char ∗dest;
char ∗src;

_____________________________________________________________________

_____________________________________________________________________

In general, strncpy is safer because it uses count as the maximum number of
characters to be copied. (By contrast, strcpy makes no check that the string has
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exceeded the size of the destination area and it may overwrite memory causing
insidious bugs.) Note that if the src string length exceeds count, the new string is
not \0 terminated. Some examples of the use of strncpy appear in the next section.

Concatenating Strings
There are two string concatenation functions with forms that correspond to the copy
functions.

/∗
∗∗ ‘strncat’ concatenates ‘src’ onto the end of ‘dest’ .
∗∗ It allows the new string to be ‘count’ characters at most.
∗∗ It returns a pointer to ‘dest’ .
∗/
char ∗
strncat(dest, src, count)
char ∗dest;
char ∗src;

/∗
∗∗ ‘strcat’ concatenates ‘src’ onto the end of ‘dest’ .
∗∗ It returns a pointer to ‘dest’ .
∗/
char ∗
strcat(dest, src)
char ∗dest;
char ∗src;

_____________________________________________________________________

_____________________________________________________________________

Strcat takes two character pointer arguments. It copies the src string into the
area of memory beginning at the terminating \0 of the dest string. You need to
take care to allow enough storage in the first string to hold the concatenation. The
only difference between strncat and strcat is that the additional integer argument
limits the number of characters copied. Unlike strncpy, strncat always makes the
final string \0 terminated, even if the final string length exceeds count.

The following code fragment copies constant strings into two areas,
concatenates them along with a newline and finally prints the resulting string,
"good luck".
#define STR_SIZE 50

char s1[STR_SIZE];
char s2[STR_SIZE];
char ∗s;

strncpy(s1, " good " , STR_SIZE);
strncpy(s2, " luck" , STR_SIZE);
s = strncat(s1, strncat(s2, " \n" , STR_SIZE), STR_SIZE);
printf(" %s" , s);

Note that strncpy and strncat have been used to avoid potential overflow. Also,
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we have found it convenient to use the result returned by one string function as an
argument of another.

Comparison and Scanning
There is a similar pair of functions that do string comparisons.

/∗
∗∗ ‘strcmp’ compares ‘string1’ and ‘string2’ .
∗∗ It returns
∗∗ −1 if string1 < string2
∗∗ 0 if string1 == string2
∗∗ +1 if string1 > string2
∗/
int ∗
strcmp(string1, string2)
char ∗string1;
char ∗string2;

/∗
∗∗ ‘strncmp’ is like ‘strcmp’ except that it compares at
∗∗ most ‘count’ characters
∗/
int ∗
strncmp(string1, string2, count)
char ∗string1;
char ∗string2;
int count;

_____________________________________________________________________

_____________________________________________________________________

Here, too, the difference is that strcmp compares two arbitrary length strings and
strncmp compares strings up to a specified size. Both functions return +1, 0 or −1
if string1 is greater than, equal to or less than string2 when compared
lexicographically. For example,

strcmp(" ant" , " bee" );
returns −1 since "ant" is alphabetically before "bee" and

strncmp(" ant" , " another" , 2);
returns 0 because the first two characters of both parameters are identical. (Of
course, a general alphabetic comparison has to take account of case.)

The strchr function scans a string for a given character, returning a pointer to
the first occurrence of that character and strrchr is similar but scans backwards
from the end of the string, returning the last occurrence of the character.
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/∗
∗∗ ‘strchr’ searches forward through ‘string’ for the character ‘ch’ .
∗∗ If it finds ‘ch’ , it returns a pointer to it.
∗∗ If not, it returns (char ∗)0.
∗/
char ∗
strchr(string, ch)
char ∗string;
char ch;

/∗
∗∗ ‘strrchr’ searches backward through ‘string’ for the character ‘ch’ .
∗∗ If it finds ‘ch’ , it returns a pointer to it.
∗∗ If not, it returns (char ∗)0.
∗/
char ∗
strrchr(string, ch)
char ∗string;
char ch;

_____________________________________________________________________

_____________________________________________________________________

The following example illustrates the use of strchr to find the second occurrence of
the character X.

if ((firstX = strchr(s, ’ X’ )) != NULL)
secondX = strchr(firstX, ’ X’ );

Some UNIX systems have functions index and rindex that correspond to strchr
and strnchr.

Common Uses and Errors
The most common errors in string manipulation programs are due to strings
overflowing their allocated destination area. To help avoid this, you should use
strncat and strncpy where possible. A particularly common and nasty variant of
this error can occur when you allocate string storage (using either malloc or an
array declaration) and forget to allocate space for the complete string including the
terminating \0 character. The correct code to make a copy of a string in a
dynamically allocated area is as follows.

/∗ make a copy of ‘oldstring’ ∗/
newstring = strcpy(salloc(strlen(oldstring)+1), oldstring);

You might well define this form in a macro or a function in your own library of
utilities. Another use for the functions strchr and strrchr is to check if a character
is a member of a particular set as in this example.

/∗ check if ‘ch’ is one of dot, question mark or exclamation ∗/
if (strchr(" .?!" , ch) != (char ∗)0)

The string functions can be used on the left hand side of assignments. For example,
the function fgets reads a string from a file and leaves a newline character before
the terminating \0. To remove the newline from a string s we can use this code
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/∗ remove newline left by ‘fgets’ ∗/
∗(s+strlen(s)−1) = ’ \0’ ;

which overwrites the newline with the string terminator.

7.8  Character types
It is common for programs that manipulate text to test if a character is a member of
a particular class. For example, you may wish to test whether a character is a digit
or an upper case letter. Although you could easily write simple functions to do
these tests, you do better to use those provided. In fact, they are not true functions
but macros . Each is called with a character as argument and each returns TRUE
(non-zero) on success or FALSE (zero) on failure of the test. To use them, you must
include ctype.h.

Several examples of the use of these macros appeared in chapter 1 and they are
also used in chapter 8.

#include <ctype.h>

/∗ true if c is: ∗/
isalpha(c) /∗ a letter ∗/
isupper(c) /∗ an upper case letter ∗/
islower(c) /∗ an lower case letter ∗/
isdigit(c) /∗ a digit ∗/
isalnum(c) /∗ alphanumeric ∗/
isspace(c) /∗ space, tab, form feed, CR or NL ∗/
ispunct(c) /∗ neither alphanumeric or control ∗/
isprint(c) /∗ a printing character ∗/
iscntrl(c) /∗ a control character ∗/
isascii(c) /∗ an ASCII character (less than 0200) ∗/

_____________________________________________________________________

_____________________________________________________________________

There is also a pair of somewhat less useful macros for converting characters
from uppercase to lowercase and lowercase to uppercase.

toupper(c) /∗ converts from lower case to upper case ∗/
tolower(c) /∗ converts from upper case to lower case ∗/

_____________________________________________________________________

_____________________________________________________________________

You should be warned that most implementations of these macros require that the
character being converted is not already in the target case. If you try to convert an
uppercase letter to uppercase, the toupper function may not give the correct result.
We recommend that you either write your own macro or test each character before
calling toupper or tolower.

7.9  Sorting and Searching
The qsort function uses the quickersort algorithm to sort items of data.
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/∗
∗∗ ‘qsort’ uses the quickersort algorithm to sort the array ‘data’
∗∗ containing ‘number’ elements, each ‘size’ bytes.
∗∗ ‘comp_func’ is a pointer to a user supplied comparison function.
∗/
void
qsort(data, number, size, comp_func)
char ∗data;
int number;
int size;
int (∗comp_func)();

_____________________________________________________________________

_____________________________________________________________________

You must provide qsort with the name of a function which compares two of your
data items. This should return −1 if the first item is less than the second, 0 if they
are equal and 1 if the first is greater than the second. Qsort calls your function with
pointers to the data items as arguments. The program below illustrates the use of
qsort.
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/∗
∗∗ read a file of records, sort them and write them out
∗/
#include <stdio.h>

#define MAXRECS 200

struct rec
{

char name[30];
char address[100];

} recs[MAXRECS];

int compare();

main()
{

int i;
int numrecs;

for (i = 0; i < MAXRECS; i++)
{

if (fread(&recs[i], sizeof (struct rec), 1, stdin) == 0)
break;

}
if (i == MAXRECS)
{

fprintf(stderr, " too many records on input \n" );
return 1;

}
numrecs = i;

qsort(recs, numrecs, sizeof (struct rec), compare);

for (i = 0; i < numrecs; i++)
if (fwrite(&recs[i], sizeof (struct rec), 1, stdout) == 0)
{

fprintf(stderr, " cannot write output \n" );
return 1;

}
}

compare(a, b)
struct rec ∗a;
struct rec ∗b;
{

return strcmp(a−>name, b−>name);
}
It reads a file of rec structures into the array recs, sorts them on the name field
and writes the sorted structures onto stdout.
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Useful search functions are bsearch, regex and regcmp: bsearch searches
for a string in a table using a binary chop algorithm; regex and regcmp match a
regular expression with a string. The regular expressions are similar in form to
those accepted by the UNIX text editor ed. Descriptions of these functions are in
the UNIX programmers manual. Their use is illustrated in the next chapter where
they allow the flexible selection of an item from a mailing list file.

7.10  Assertions
It is said that there are two ways in which a program can be wrong. The first way is
for it to fail dramatically and obviously, as with a memory dump message. This is
the better mode of failure. The second, far worse form of error, is when a program
runs to completion and produces plausible but incorrect results. Appropriate uses
of assertions can improve the chance that programs, which might be wrong in the
second way, produce error messages.

The assert function is useful in program debugging as well as helping you
produce correct programs. It simply prints an error message if its argument is zero
and does nothing otherwise. It should be used when you know something should be
true at some point in your program. Then if this condition fails to hold, the
problem is brought to your attention by assert’s error message. In fact, assert is a
macro defined in the file assert.h.

/∗
∗∗ ‘assert’ prints an error message if ‘expression’ is non zero
∗/
assert(expression)
int expression;

_____________________________________________________________________

_____________________________________________________________________

The following code fragment illustrates a use of assert.
#include <assert.h>

/∗ copy name to next record in list ∗/
update(pname, list, index)
char ∗pname;
struct prec ∗list[ ];
int index;
{

assert(strlen(pname) < NAMESIZE);
assert((index >= 0) && (index < MAX));
strcpy(list[ index]−>name, pname);

}
It ensures that we know about an overlength string or an out of bounds array index
before the call to strcpy. Note that the program continues to run even if the
assertion prints an error message.

7.11  Non-local Goto - Long Jump
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The functions setjmp and longjmp can jump from deep within nested function
calls to another location in your program. This facility may sound very primitive,
unstructured and error-prone but it does have important uses: in particular, it is
useful in a large and complex program which may encounter serious error
conditions in a deeply nested portion of the code. It may not be acceptable to
simply print an error message and quit. Nor is it desirable to take the approach of
unravelling the nested function calls by passing back an error indicator which then
needs to be tested at several points. In such cases, you can use a longjmp to jump
to a location previously marked with a setjmp.

The setjmp function saves the current local variable state and the longjmp
function restores that state and returns control as if the first call on setjmp were
returning. When first called, setjmp returns the value 0 and saves the state. On
returning as the result of a longjmp it returns a user specified value. The buffer
used to hold a state is declared in longjmp.h.

#include <setjmp.h>

/∗
∗∗ ‘setjmp’ saves the function call state in ‘state’
∗∗ it returns 0 when first called and a user specified value
∗∗ when returning as the result of a ‘longjmp’
∗/
int
setjmp(state)
jmp_buf state;

/∗
∗∗ ‘longjmp’ restores the function state to the value stored
∗∗ in ‘state’ as the result of a ‘setjmp’ call.
∗∗ The corresponding ‘setjmp’ call will return ‘value’
∗/
void
longjmp(state, value)
jmp_buf state;
int value;

_____________________________________________________________________

_____________________________________________________________________

You should be aware that the state saved by setjmp includes local variables
from the stack but excludes register variables. Also you cannot jump to a function
that has returned and is no longer on the stack.

7.12  System Interface
Like most operating systems, UNIX provides a way for one program to initiate the
execution of another. This facility is used by the shell to start the appropriate
program after it has analysed a command line. It can also be very useful to the
ordinary C programmer.

This section deals with the interface between your program and its operating
environment. This includes communication between your program and another
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program, where this may be the shell, some other process that initiated your
program, a process that is initiated by your program or various other processes that
run in parallel with your program. Much of this section requires more sophisticated
understanding of UNIX than most of the book. So you may wish to skim it on a
first reading.

7.12.1  Environment information
We saw in Chapter 5 (page 000) that when a program starts, the main function is
called with three arguments, as shown in the following declaration.
/∗ declaration of main function for any program ∗/
int main(argc, argv, envp)
int argc; /∗ number of arguments in argv ∗/
char ∗argv[ ]; /∗ array of pointers to argument strings ∗/
char ∗envp[ ]; /∗ array of pointers to environment variables ∗/
Although we discussed argc and argv in Chapter 5, we ignored envp which is a
pointer to an array of strings with a range of useful information about the program’s
environment, including environment variables which are character strings in this
form.

variable_name = value

You can set them using the shell and they are passed to a program that is started
from the shell. For example, the name of the login directory of a user is usually
kept in the environment variable HOME and the type of terminal currently in use is
kept in the variable TERM. We can set these with shell commands like these.

HOME=/usr/kim
TERM=5620

To make environment variables easier to use, the value of envp is also available in
the global variable environ which must be declared like this.
extern char ∗environ[ ];
Unlike envp, this can be used anywhere in your program. Also, the getenv
function scans the environment list and returns the value of a specified variable. So,
for example, you can find the type of terminal being used thus.

if ((terminal = getenv(" TERM" )) == (char ∗)0)
{

fprintf(stderr, " %s: TERM variable not set \n" , argv[0]);
exit(1);

}
The actual details of the environment variables tend to differ across systems, but
the type of information you can expect includes the default set of directories that
the shell searches for command names, called the search path (PATH), the prompt
strings used by the shell (PS1, PS2) and the users home directory (HOME).
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/∗
∗∗ ‘getenv’ gets the value of the environment variable ‘name’ .
∗∗ On success, it returns a pointer to the value string.
∗∗ If ‘name’ is not found, it returns (char ∗)0.
∗/
char ∗
getenv(name)
char ∗name;

_____________________________________________________________________

_____________________________________________________________________

7.12.2  Initiating processes
The system call that starts another process is called exec. It operates by suspending
the current process and handing control to a new process. If you want your program
to initiate another program and continue execution itself, you need to use the fork
system call which we describe later.

As well as starting another process, exec can pass arguments to it. There are
several forms of the exec function, with each processing its arguments differently
before invoking the exec system call to start another process. The differences
relate to the type of file that is executed, the places the file can be and the number
of arguments and the environment passed to the program that is invoked.

The first of the exec functions that we consider is execve, which hands
control to another process and explicitly passes both the program arguments and the
environment.

/∗
∗∗ ‘execve’ starts the program in ‘filename’ with arguments ‘argv’
∗∗ and the environment in ‘envp’ .
∗∗ On failure, it returns −1 (and any return indicates failure).
∗/
int
execve(filename, argv, envp)
char ∗filename;
char ∗argv[ ];
char ∗envp[ ];

_____________________________________________________________________

_____________________________________________________________________

The last string pointer in argv and the last environment variable pointer in envp
must be followed by NULL pointers ((char *)0) to indicate the end of the list. The
execve function is useful if the number of arguments or environment variables
cannot be determined until run time. The filename argument specifies the file that
contains the program to be run. This is interpreted relative to the current directory
unless an absolute pathname is given. (An absolute pathname starts with a slash.)
The file must contain an executable binary program and cannot be a command file
(but see the execlp and execvp functions later).

When you don’t want to explicitly pass environment variables to the new
process, use the execv function so that the environment of the invoking process is
passed to the new process.
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/∗
∗∗ ‘execv’ starts the program in ‘filename’ with arguments ‘argv’ .
∗∗ On failure, it returns −1 (and any return indicates failure).
∗/
int
execv(filename, argv)
char ∗filename;
char ∗argv[ ];

_____________________________________________________________________

_____________________________________________________________________

The more commonly used function of this pair is execv because you usually
do not need to provide an explicit environment for a new process. The usual reason
for using execve is for security, particularly in the situation where you want the
new process to run in a restricted environment.

Where the number of arguments to be passed to the new process is known in
advance, you can use execl or execle.

/∗
∗∗ ‘execl’ starts the program in ‘filename’ with the arguments
∗∗ ‘arg0’ to ‘argn’ .
∗∗ On failure, it returns −1 (and any return indicates failure).
∗/
int
execl(filename, arg0/∗, ..., argn, (char ∗)0∗/)
char ∗filename;
char ∗arg0;

...
char ∗argn;
/∗
∗∗ ‘execle’ is identical to ‘execl’ except that it explicitly
∗∗ passes the environment in ‘envp’ .
∗∗ On failure, it returns −1 (and any return indicates failure).
∗/
int
execle(filename, arg0, /∗..., argn, (char ∗)0,∗/ envp)
char ∗filename;
char ∗arg0;

...
char ∗argn;
char ∗envp[ ];

_____________________________________________________________________

_____________________________________________________________________

The last argument pointer must be NULL ((char ∗)0) to indicate the end of the
argument list.

For example, the following code segment passes control to the UNIX sort
utility program.
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...
if (execl(" /bin/sort" , " sort" , " in" , " −o" , " out" , (char ∗)0) == −1)
{

perror(argv[0]);
exit(1);

}
/∗ program can never reach this point unless ‘execl’ fails ∗/

Note that the full path name of the file containing the sort program has to be
specified. The remaining arguments in the execl call are the arguments we want for
the sort utility, the program name sort being argv[0], and the other arguments
ensure that the input data is taken from the file called in and the sorted output goes
to the file out. Notice also the use of the perror function to print an error message
on the standard error file.

When you type a UNIX command, the shell searches one or more directories
looking for a file of that name. On finding it, the shell uses the exec system call to
invoke it. The sequence of directories that is searched is described by the
environment variable PATH and you can redefine this to change the directories
searched or their search order. The same facility is available with execvp and
execlp which are identical to execv and execl except that they search the
directories given in the PATH environment variable looking for the specified
program.

/∗
∗∗ ‘execvp’ searches PATH for ‘filename’ and starts the program
∗∗ or, if ‘filename’ contains shell commands, it invokes a shell.
∗∗ It passes the arguments ‘argv’ .
∗∗ On failure, it returns −1 (and any return indicates failure).
∗/
int
execvp(filename, argv)
char ∗filename;
char ∗argv[ ];

/∗
∗∗ ‘execlp’ is identical to ‘execvp’ except that
∗∗ it passes the arguments ‘arg0’ to ‘argn’ .
∗/
int
execlp(filename, arg0/∗, ..., argn, (char ∗)0∗/)
char ∗filename;
char ∗arg0;

...
char ∗argn;

_____________________________________________________________________

_____________________________________________________________________

These functions have an added bonus: if the file found contains commands rather
than an executable binary, they invoke a shell to interpret the commands. The name
of the particular shell to be used is taken from the environment variable SHELL and
if SHELL isn’t set, /bin/sh is used. Security issues are particularly important in the
situation where a shell could be invoked. The shell will search directories specified
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in PATH for commands to be executed. If this is set to a user’s directory, programs
other than the ones you may have intended could be executed.

7.12.3  Parallel Execution
Where exec allows a process to hand over control to another program, fork
duplicates a process and sets both executing in parallel. By combining fork and
exec, one program may start a second program and continue execution itself.

When a program uses the fork system call, a copy is made of its code, data
space and attributes such as environment variables, current working directory, nice
value and many others. The original is then called the parent process, the copy is
called the child process and both execute in parallel. Both processes are identical
with one important exception: the value returned by the fork call in the parent
process is the process ID of the child process, while the value returned in the child
process is zero. If an error occurs, no duplication takes place and the call returns the
usual −1 error code.

/∗
∗∗ ‘fork’ duplicates the current process
∗∗ On success, it returns:
∗∗ 0 to child process
∗∗ pid of child to parent process
∗∗ On error, it returns −1
∗/
int
fork()

_____________________________________________________________________

_____________________________________________________________________

The companion system call for fork is wait. This allows a parent process to
wait for the completion of a child process. A call on the wait function returns
immediately if the child process has already terminated or if the calling program is
interrupted by a signal (described later in this chapter).

/∗
∗∗ ‘wait’ waits for termination of the child process with ‘status’ value.
∗∗ On success, it returns process id of terminating process.
∗∗ If there is no child process to wait for the value −1 is returned.
∗/
int
wait(status)
int ∗status; /∗ pointer to integer containing

status returned by child process ∗/

_____________________________________________________________________

_____________________________________________________________________

When a process returns or uses the exit system call it passes back a small
integer value which is made available to the parent process in the location pointed
to by status. In fact the least significant 8 bits of the value returned by the child
process is shifted left 8 places and placed in ∗status. A termination code is placed
in the least significant 8 bits. (These codes are described in the UNIX manual entry
for signal(2).)
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Here is an example of the use of fork and exec to start another program and
wait for it to terminate.

switch(pid = fork())
{
case 0: /∗ child exec’ s new process ∗/

execv(" newproc" , argv);
/∗ fall through if exec fails ∗/

case −1:/∗ could not fork ∗/
/∗ print appropriate error message ∗/
perror(myname);
exit(1);

default:/∗ parent waits for child to finish ∗/
while ((wval = wait(&status)) != pid)

if (wval == −1)
{

perror(myname);
exit(1);

}
}

Note that this example uses execv to initiate a program and so cannot be used to
run any arbitrary shell command. To do that, we need to exec the shell with the −c
option and the command as arguments as in the following function. This has the
disadvantage of using an extra process.
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/∗
∗∗ Execute a shell command.
∗∗ This is similar to the standard ‘system’ function
∗/
system(command)
char ∗command; /∗ command to execute ∗/
{

int status; /∗ status returned by command ∗/
int pid; /∗ process id of command ∗/
int wval; /∗ value returned by wait ∗/

switch(pid = fork())
{
case 0: /∗ child exec’ s shell ∗/

execl(" /bin/sh" , " sh" , " −c" , command, 0);
/∗ fall through if exec fails ∗/

case −1:/∗ could not fork ∗/
/∗ print appropriate error message ∗/
perror(myname);
exit(1);

default:/∗ parent waits for child to finish ∗/
while ((wval = wait(&status)) != pid)

if (wval == −1)
return −1;

}
return status;

}
Note that this example has been given purely to illustrate the use of exec. It
mimics the standard function system and you would be better to use that than to
write your own.

7.12.4  Controlling a Process
Once you get a process started using fork or exec there are several actions it can
take to control its own execution. For example, it can terminate, pause for a given
time, change its priority, change the size of its data area or change its uid or gid.
(Some of these operations require appropriate permission). Now we see the
functions that give such control.

The most basic action a process can take is to terminate itself using exit.
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/∗
∗∗ ‘exit’ stops execution of the process with the least
∗∗ significant 8 bits of ‘status’ being passed to the parent process.
∗∗ It never returns!
∗/
exit(status)
int status;

_____________________________________________________________________

_____________________________________________________________________

A process can suspend itself or go to sleep using pause.

/∗
∗∗ ‘pause’ waits indefinitely for a signal from ‘kill’ or ’ alarm’ .
∗∗ After a signal, ‘pause’ returns the value −1.
∗/
int
pause()

_____________________________________________________________________

_____________________________________________________________________

This may seem as drastic as the exit system call. In fact, after execution of pause,
the process is still alive but suspended and may be reactivated upon receipt of a
signal (described on page 000 in the section on interprocess control).

Processes can also change some aspects of their execution environment. For
example, each process in a UNIX system has a scheduling priority value. This
value can be increased (i.e. made worse) by any process and decreased (made
better) by processes whose user id is zero (this is the superuser uid).

/∗
∗∗ ‘nice’ alters the scheduling priority by ‘increment’ .
∗/
void
nice(increment)
int increment;

_____________________________________________________________________

_____________________________________________________________________

This is called nice because you typically use it to be nice to others by lowering the
priority of long running compute bound programs.

The uid and gid of a process can be changed using the setuid and setgid
system calls. These calls are normally used by programs executing with the
superuser uid.

One last aspect of a process’s environment that it can modify is the extent of
its data area. This area occupies a contiguous set of memory addresses, the last
available address being called the break. You can change the break (to allocate
more or less memory) with the brk or sbrk functions.
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/∗
∗∗ ‘brk’ sets the last address in the data area (the break) to ‘address’ .
∗∗ On success, it returns 0.
∗∗ On failure, it returns −1.
∗/
char ∗
brk(address)
char ∗address;

/∗
∗∗ ‘sbrk’ increases the program data area by ‘increment’ .
∗∗ On success, it returns a pointer to the beginning of the new area.
∗∗ On failure, it returns −1.
∗/
char ∗
sbrk(increment)
int increment;

_____________________________________________________________________

_____________________________________________________________________

These functions are used by the storage allocation functions (malloc and realloc).

7.12.5  Process Information
Every process has an identifying number or process id . As each process is run by a
particular user and group, it also has a uid and gid . These three values are given by
the following functions.

/∗
∗∗ ‘getpid’ returns the process number of this process
∗/
int
getpid()

/∗
∗∗ ‘getuid’ returns the user identification number of this process
∗/
int
getuid()

/∗
∗∗ ‘getgid’ returns the group identification number of this process
∗/
int
getgid()

_____________________________________________________________________

_____________________________________________________________________

There are corresponding functions geteuid and getegid that give the effective uid
and gid.

The process id can be used to generate unique names within a program since at
any one point in time all process numbers are different. As we saw, mktemp
generates the names of temporary files using the process id.



-- --

206 C in the UNIX Environment

The uid and gid can be used to find the login and group names of the process
and also to determine other user information as described in the section on user
information (page 000).

The execution time of a process and its child processes is available from the
times function.

/∗
∗∗ ‘times’ places the execution time for this process and its
∗∗ child processes in ‘buffer’ .
∗∗ On error, the value −1 is returned.
∗/
long
times(buffer)
struct
{

long user; /∗ user time of process ∗/
long system; /∗ system time of process ∗/
long child_user; /∗ user time of child procs ∗/
long child_system; /∗ system time of child procs ∗/

} ∗buffer;

_____________________________________________________________________

_____________________________________________________________________

The times are given in clock ticks where the length of a clock tick depends on your
system.

The user time is the amount of time spent executing the user’s process, while
the system time is the time spent in the system on behalf of the user’s process. The
times for child processes are calculated as the sum of the times for all children (and
other descendants) of the current process.

7.12.6  Process Monitoring
UNIX has powerful facilities for monitoring and controlling process execution.
The ptrace function allows a program to control the execution of a child process.
It also allows the memory containing the child process to be examined and
modified. This function is commonly used by debugging programs such as adb .
Another system call function, profil, allows statistics to be gathered on the
frequency of execution of parts of your program. This system call is supported by
the function monitor and the program prof. A detailed description of these
functions is in prof(1), ptace(2), profil(2) and monitor(3).

7.12.7  Interprocess Communication
UNIX has only a simple mechanism for interprocess communication, the signal ,
which is something like a software interrupt that can be initiated by some external
event or another process. When a signal arrives at a process it can cause the
program to be terminated, it can be ignored (except for the kill signal) or it can be
caught . Catching a signal means invoking a user specified function that carries out
an appropriate action. The user’s process is often unaware that a signal has arrived
since execution is interrupted, the catching function invoked and execution resumed
when the function returns.
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Signals can occur as a result of some external action such as the user typing
the interrupt or quit characters on the keyboard of the controlling terminal. They
can happen when the program fails because it executed an illegal instruction or
tried to reference memory that it did not own. A complete list of signals and their
description is in signal(2).

For example, the following function uses signals to put a process to sleep for a
given number of seconds.
/∗
∗∗ Suspend the current process for ‘time’ seconds.
∗∗ Similar in purpose to the standard ‘sleep’ function.
∗/
#include <signal.h>

sleep(time)
unsigned time;
{

unsigned alarm();
int (∗alrm_func)();
int wakeup();

if(time == 0)
return(0);

/∗ set pointer to alarm signal catching function ∗/
alrm_func = signal(SIGALRM, wakeup);
/∗ set the alarm clock ∗/
alarm(time);
/∗ wait for it to ring ∗/
pause();
/∗ restore previous alarm catcher ∗/
signal(SIGALRM, alrm_func);
/∗ return amount of time unslept (if any) ∗/
return alarm(0);

}

static
wakeup()
{

/∗ nothing to do except return ∗/
}
Our function starts by checking its argument. If this is all right, it proceeds to call
signal which establishes an association between the signal SIGALRM and the
function wakeup: when the SIGALRM signal occurs, the wakeup function will be
invoked. We also keep in alrm_func a pointer to the function that would have
been called on the occurrence of SIGALRM. Next it calls alarm which evokes the
signal SIGALRM after time seconds. Then the program pauses until a signal occurs.
In general, this signal will be SIGALRM and our wakeup function executes. The
sleep function is restarted after the call to pause and then we use signal again to
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re-establish the previous association between SIGALRM and the function it
previously would have invoked. The alarm function returns the amount of time
remaining in the alarm clock, so if any other signal ended our pause, the amount of
time remaining will be returned by the alarm(0) call.

Before we discuss the signal management functions, we emphasize that our
sleep function is only to illustrate the use of signals. A more sophisticated version
of the sleep function is already available in the C library. The library version takes
care of the situation where the alarm facility is already being used by your program
and it also handles wakeups from signals other than SIGALRM. This situation is
typical: standard functions are generally better than you would be likely to write.

Each signal has a number. Names are associated with these numbers in a set
of #defines in signal.h. To catch a signal the system must be given the signal
number and the address of a function to execute when the signal occurs. This is
done by signal.

#include <signal.h>

/∗
∗∗ ‘signal’ establishes an association between ‘sig’ and ‘func’ so
∗∗ that when the signal number ‘sig’ occurs, the function ‘func’
∗∗ is invoked. When ‘func’ is SIG_IGN the signal is ignored.
∗∗ When ‘func’ is SIG_DFL the process is terminated.
∗∗ ‘signal’ returns a pointer to previous signal catching function
∗∗ or −1 (you have to cast the result to int before testing it)
∗∗ if an illegal signal number is specified
∗/
int
(∗signal(sig, func))()
int sig;
int (∗func)();

_____________________________________________________________________

_____________________________________________________________________

As well as external events or internal error conditions, signals can be generated by
other processes, using the kill function.

/∗
∗∗ ‘kill’ sends the signal ‘sig’ to the process with id ‘pid’ .
∗∗ On success, it returns 0.
∗∗ On failure, it returns −1.
∗/
int
kill(pid, sig)
int pid;
int sig;

_____________________________________________________________________

_____________________________________________________________________

Although this could be used to set up a primitive interprocess communication
system, it is more often used for one process to terminate another in which case sig
is normally set to SIGTERM.
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Except in the case of the superuser, a process sending a signal must have the
same effective uid as the process receiving the signal (and a process may send a
signal to itself). A process may also specify that the SIGALRM signal is to be sent to
it after a given time has elapsed, using the alarm function.

/∗
∗∗ ‘alarm’ requests the signal ‘SIGALRM’ after ‘time’ seconds.
∗∗ It returns the amount of time remaining from the last call to it.
∗∗ If there has been no previous alarm call, it returns 0.
∗/
int
alarm(time)
unsigned time;

_____________________________________________________________________

_____________________________________________________________________

In most situations, execution of a process is interrupted by a signal and then
resumed at the point after the signal catching function returns. However, when the
process is executing certain system calls, the system call returns prematurely with
an error indication and errno is set to the value EINTR (defined in errno.h). For
example, SIGALRM can be used to terminate a read system call that is taking too
long. This can be used in interactive systems where you may want to give the user
help if they take too long in replying to a question. It is also a way of implementing
similar timeouts in programs that handle communication lines. The following code
fragment gives a user help if they take too long to respond.
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#include <signal.h>

int toolong;
int count = 0;
int wakeup();
int number;

main()
{

for (;;)
{

printf(" What is your number? " );
toolong = 0;
signal(SIGALRM, wakeup);
alarm(10);
scanf(" %d" , &number);
if (toolong == 0)

break;

if (count == 1) /∗ First timeout response ∗/
printf(" \nYour number is on your ID card. \n" );

else /∗ Second timeout response ∗/
{

printf(" \nPlease report to your supervisor " );
printf(" if you have lost your ID card. \n" );
exit(1);

}
}

alarm(0);

printf(" Number: %d \n" , number);
}

wakeup()
{

toolong = 1;
count++;

}
The central for loop starts by printing a message to the user. Then it sets up a
signal and an alarm so that the program waits no more than ten seconds for the user
to respond: it calls signal so that the function wakeup will be called if the
SIGALRM signal occurs and then it calls alarm to send the signal (SIGALRM) in ten
seconds. Next we have a scanf which reads the user’s reponse. Now, if the user
does repond within ten seconds, toolong will still be zero in the tests immediately
after the scanf and we break out of the for loop. On the other hand, if the user
takes more than ten seconds to respond, the signal will be sent by alarm and
wakeup will execute, setting toolong and incrementing count and terminating the
scanf function so that the user gets the first help message. If they take more than
ten seconds the next time the input is requested, they get the second message. Note
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that the signal is reset to SIG_DFL after being caught and so, we need to call signal
before each call to alarm.

7.13  User Information
Utility programs often need information about the user running the program. This
is typically the user’s account name or home directory. While it is usually possible
to get this information from environment variables (see page 000 on the system
interface), it is better and more secure to get it from the system password file
(because the user may have changed the environment variables.)

The getuid function (page 000) returns the identification number of the user
running the program. This can be used in getpwuid to search for that user’s entry
in the password file and getpwnam finds the entry, given a user name.

/∗
∗∗ ‘getpwuid’ returns to a pointer to the password information
∗∗ for the user with id ‘uid’ .
∗/
struct passwd ∗
getpwuid(uid)
int uid;

/∗
∗∗ ‘getpwnam’ returns a pointer to the password information
∗∗ for the user with login name ‘username’ .
∗/
struct passwd ∗
getpwnam(username)
char ∗username;

_____________________________________________________________________

_____________________________________________________________________

Both functions return a pointer to a structure containing all the fields of a
password file entry, a structure defined in pwd.h.
struct passwd
{

char ∗pw_name; /∗ user name ∗/
char ∗pw_passwd; /∗ encrypted password ∗/
int pw_uid; /∗ user ID number ∗/
int pw_gid; /∗ group ID number ∗/
int pw_quota; /∗ unused ∗/
char ∗pw_comment; /∗ unused ∗/
char ∗pw_gecos; /∗ unused ∗/
char ∗pw_dir; /∗ HOME directory ∗/
char ∗pw_shell; /∗ program to use as shell ∗/

};
The fields that are most used are the username, user/group ID, HOME directory and
shell program.

We illustrate how you access a users HOME directory in the following code
from a program that maintains diaries. It opens the file monday in the directory



-- --

212 C in the UNIX Environment

Diary in the user’s HOME directory.
struct passwd ∗pwent;
char fname[NAMESIZE];

pwent = getpwuid(getuid());
strncpy(fname, pwent−>pw_dir, NAMESIZE);
strncat(fname, " /Diary/monday" , NAMESIZE);

if ((mon = fopen(fname, " r" )) == NULL)
{

fprintf(stderr, " %s: cannot open file %s \n" ,
myname, fname);

exit(1);
}

Strictly speaking we should have checked the result of the getpwuid function.
Since it would be very unusual and probably a system error to have a uid without a
corresponding password file entry, it is normally safe to omit the test.

7.14  Time of Day
You can get the actual time of day, as opposed to the amount of time used by a
process, with a collection of functions of which we met two (time and localtime)
in the program that printed times at different locations in the world on page 000 of
Chapter 5. This section covers these and the other functions for dealing with the
time and date.

/∗
∗∗ ‘time’ returns the time in seconds since 00:00:00 GMT,
∗∗ 1st January 1970. It also sets ‘resultp’ to access the same value
∗∗ Note: ‘time’ itself returns a value
∗∗ ‘resultp’ is a pointer to the value.
∗/
long
time(resultp)
long ∗resultp;

_____________________________________________________________________

_____________________________________________________________________

Beware! There is a very common error in using time: you must remember that its
argument must be a pointer . The time is returned both as a function value and
through the argument pointer. You can call the function with a null pointer
((long∗)0) to indicate that the time is to be returned only as the value of the
function. You usually use time in association with other time and date functions
and since these take a pointer argument, you usually need the pointer argument to
time rather than the value returned.

Now the value returned by time is expressed as the number of seconds past the
beginning of 1970. This is not directly useful! There is a set of library functions
that convert it into something more meaningful. The ctime function takes a pointer
to a time as returned by time and returns a pointer to a string that gives the date and
time in a standard fixed format string.
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/∗
∗∗ ‘ctime’ sets the value pointed to by ‘timeptr’ to a date/time string.
∗/
char ∗
ctime(timeptr)
long ∗timeptr;

_____________________________________________________________________

_____________________________________________________________________

For example, for the corresponding time value, ctime returns this string:

"Mon Jan 7 11:20:00 1980\n"

The string returned always occupies 26 characters including a newline and \0 at the
end. Each field (day of the week, month, date, time and year) occupies a constant
space. So, for example, in the date above, the number 7 has an extra space in front
of it, allowing for two digit dates. The fixed format means that the string can be
used either for direct output or parts can be extracted. Note that you cannot write
an expression like this

ctime(time(x)) /∗WRONG ∗/
because time returns a value and ctime requires a pointer to the value. You should
also be aware that ctime uses a static area for the result string: subsequent calls on
ctime overwrite this area.

If you need individual parts of the date/time it can be more convenient to use
the localtime function.

/∗
∗∗ ‘localtime’ returns a pointer to a ‘tm’ structure with
∗∗ time information corresponding to the time in seconds
∗∗ pointed to by ‘timeptr’ .
∗/
struct tm ∗
localtime(timeptr)
long ∗timeptr;

_____________________________________________________________________

_____________________________________________________________________

The structure tm is defined in time.h as follows.
struct tm
{

int tm_sec; /∗ seconds ∗/
int tm_min; /∗ minutes ∗/
int tm_hour; /∗ hours (0−23)∗/
int tm_mday; /∗ day of month (1−31)∗/
int tm_mon; /∗ month of year (0−11)∗/
int tm_year; /∗ year (1900−?)∗/
int tm_wday; /∗ day of week (0−7)∗/
int tm_yday; /∗ day of year (0−365)∗/
int tm_isdst; /∗ daylight saving ∗/

};
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The function gmtime is similar to localtime except that the values returned in
the tm structure are Greenwich Mean Time (GMT).

Where localtime or gmtime is used, asctime can convert the time
components into a standard ctime string.

/∗
∗∗ ‘asctime’ returns a ‘ctime’−style string from the ‘tm’ structure
∗∗ pointed to be ‘tmptr’ .
∗/
char ∗
asctime(tmptr)
struct tm ∗tmptr;

_____________________________________________________________________

_____________________________________________________________________

The last function in this group gives the standard name for a time zone.

/∗
∗∗ ‘timezone’ returns the name for the timezone
∗∗ ‘minutes’ west of Greenwich, with daylight
∗∗ saving as defined by ‘dst’ .
∗∗ If no name can be found for that time zone, it returns a string
∗∗ describing the zone relative to GMT.
∗/
char ∗
timezone(minutes, dst)
int minutes;
int dst;

_____________________________________________________________________

_____________________________________________________________________

The first argument gives the number of minutes west of Greenwich of the location
for the timezone named: for zones ahead of GMT, this is a negative number. The
second argument is non-zero if daylight saving is in effect. If the time zone name is
not available, the string returned has this form:

GMT+hh:mm

7.15  Other libraries
There are several other general purpose library functions, including the
mathematical, plotting and terminal capabilities libraries. These libraries are not
automatically searched by the loader: you need to explicitly name them, using the
−l flag on the cc command. For example, a program that uses mathematical
functions such as sin must have the mathematical library called m linked to it. So
you compile it with a command like:

cc myprog.c −lm
The general form is:

cc program-name.c −llibrary-name

We described the complete process associated with the cc command in Chapter 4
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(page 000).

7.15.1  Mathematical
As you would expect, there is a considerable range of mathematical functions.
Most of them are in the mathematical library m.

They include trigonometric and hyperbolic functions which accept double
arguments and return a double. The trigonmetric functions accept angles
expressed in radians and, as always, you need to be aware of potential overflow in
using badly behaved functions like tangent. These functions have largely self-
explanatory names: sin, cos, asin, acos, atan (atan2 which returns the tangent
of its first argument divided by its second), sinh, cosh, and tanh.

The exponential functions are all of type float and have the following actions.

exp(x) /∗ e raised to the power x ∗/
float x;

log(x) /∗ natural log of x ∗/
float x;

log10(x) /∗ log to the base 10 of x ∗/
float x;

pow(x, y) /∗ returns x raised to the power y ∗/
float x, y;

sqrt(x) /∗ returns the square root of x ∗/
float x;

_____________________________________________________________________

_____________________________________________________________________

There is also a collection of functions for getting absolute values and conversions to
integers.

int abs(x) /∗ returns the absolute value of x ∗/
int x;

float fabs(x) /∗ as ‘abs’ but operates on floating point x ∗/
float x;

int floor(x) /∗ gives the largest integer smaller than x ∗/
float x;

int ceil(x) /∗ gives the smallest integer larger than x ∗/
float x;

_____________________________________________________________________

_____________________________________________________________________

There are several others, including hypot and cabs which give the euclidean
distance between two double arguments, various forms of Bessel functions,
multiple precision arithmetic functions as well as rand and srand which give
sequences of random numbers. These all appear in section 3, Volume 1 of the
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UNIX Programmer’s Manual.

7.15.2  Plotting
The plot library has functions for graphical output. It is searched if you have the
−lplot option on the cc command line. It has the following functions.

openpl() /∗ initialise plotting functions ∗/

erase() /∗ erase the display screen ∗/

label(string) /∗ plot " string" at the current position ∗/
char ∗string;

line(x1, y1, x2, y2) /∗ draw a line from x1,y1 to x2,y2 ∗/
int x1, y1, x2, y2;

circle(x, y, radius) /∗ draw a circle of radius " radius" ∗/
int x, y, radius; /∗ centred on x,y ∗/

arc(x, y, x1, y1, x2, y2) /∗ draw an arc from x1,y2 to x2,y2 ∗/
int x, y, x1, y1, x2, y2; /∗ centred on x,y ∗/

move(x, y) /∗ make the current position x, y ∗/
int x, y;

cont(x, y) /∗ draw a line from the current position ∗/
int x, y; /∗ to point x,y ∗/

point(x, y) /∗ plot point x,y ∗/
int x, y;

linemod(style) /∗ select line style: dotted, solid, ∗/
char ∗style; /∗ longdashed, shortdashed, dotdashed ∗/

space(x1, y1, x2, y2) /∗ specify the size of the drawing ∗/
int x1, y1, x2, y2; /∗ drawing is scaled to fit the device ∗/

closepl() /∗ finish plotting ∗/

_____________________________________________________________________

_____________________________________________________________________

A very useful feature of the functions is that they send device-independent plotting
commands to standard output and these can be interpreted by the plot filter for any
one of a range of devices. For example, the following command line plots a graph
on an HP7220 plotter.

myprog | plot -THP7220

7.15.3  Terminal Capabilities
There is a vast range of asynchronous video terminals that can be connected to a
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UNIX system. For any one operation, each type of terminal requires a different set
of control codes. So for example, there is no standard character sequence for
common operations like clearing the screen or moving the cursor to the upper left
corner. This poses problems when you want to write programs that can work on a
number of different terminals.

The termcap package overcomes this problem by creating a uniform interface
between a program and any terminal. It uses a database of terminal capabilities and
functions. It also gives a program access to properties of terminals such as the
number of characters per line or lines per screen. The database has descriptions of a
large number of different terminals and you can easily add new ones as you acquire
terminals.

Termcap’s capability database is simply an ASCII file that can be modified
with a normal text editor. The entry for each terminal consists of a series of colon
separated fields. These may be spread over several lines, using a backslash at the
end of each line except the last. The first field is the name, or names, for the type of
terminal. It consists of one or more words separated by vertical bars. The second
and subsequent fields can be one of three types:

• a word alone indicates that the terminal has a particular named property,
• a word followed by a hash sign (#) and a number indicates that the property

has the numeric value
• a word followed by an equals sign (=) and a sequence of characters

associates that character sequence with the named property. The character
sequence extends from the equals sign to the colon that marks the beginning
of the next field.

A large number of capabilities have been given standard names. For a complete list
and more details of the format of fields see termcap(5).

Here is an example termcap entry:
ADM3a|ADM|3a:co#80:li#24:\
cl=^Z:

The terminal type is ADM3a, ADM or 3a. The terminal has 80 columns (co#80) and
24 lines (li#24). The screen is cleared if the character ^Z (Control-Z or 032) is sent
to the terminal. The backslash ( \) is used to continue an entry over several lines.

To clear the screen on an arbitrary terminal you must determine the terminal
type, retrieve the relevant termcap entry and then use the character sequence value
of the cl property. The terminal type is normally available in the shell environment
variable TERM. To do the rest of the job, you use the following functions from the
termlib library (you need −ltermlib on the cc command).
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/∗
∗∗ ‘tgetent’ fills ‘buffer’ with the termcap entry for terminal type ‘name’ .
∗∗ It returns −1 if the termcap file is inaccessible
∗∗ 0 if there is no entry for the terminal
∗∗ 1 if the entry is found
∗/
int
tgetent(buffer, name)
char ∗buffer;
char ∗name;

/∗
∗∗ ‘tgetnum’ returns the integer ‘capability’ for the current terminal type.
∗/
int
tgetnum(capability)
char ∗capability;

/∗
∗∗ ‘tgetflag’ returns the boolean ‘capability’ for the current terminal type.
∗/
int
tgetflag(capability)
char ∗capability;

/∗
∗∗ ‘tgetstr’ returns the string ‘capability’ for the current terminal type.
∗∗ The argument ‘area’ is a pointer to a pointer to the result string.
∗/
char ∗
tgetstr(capability, area)
char ∗capability;
char ∗∗area;

_____________________________________________________________________

_____________________________________________________________________

The termcap entry for a terminal type is returned by tgetent. Its first
argument is a pointer to a buffer area for the termcap entry. This should be at least
1024 characters as some terminal descriptions are very large. The second argument
is a pointer to a string containing the terminal type. The function returns −1 if the
termcap database file is inaccessible, 0 if there is no entry for the nominated
terminal and 1 if the entry is successfully retrieved.

You can retrieve the terminal capabilities with the functions tgetnum (for
numeric values), tgetflag (for true/false properties) and tgetstr (for string values).
Both tgetnum and tgetflag require a string argument giving the name of the
capability and they return an integer containing the value (0 or 1 in the case of
tgetflag). You give tgetstr a string argument with the capability name but it also
needs the address of a pointer to an area for the result string. It returns a pointer to
the result string and the area pointer is set to the next free location.

You can move the cursor on a terminal using tgoto which returns the character
sequence to move the cursor to a particular line/column.
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/∗
∗∗ ‘tgoto’ returns the character sequence to move cursor according to
∗∗ the cursor motions capability ‘cm’ , to the column ‘destcol’
∗∗ in ‘destline’ .
∗∗ It returns an appropriate character sequence.
∗/
char ∗
tgoto(cm, destcol, destline)
char ∗cm;
int destcol;
int destline;

_____________________________________________________________________

_____________________________________________________________________

Certain operations on some terminals require delays and tputs sends a string to the
terminal (using a user specified function, outfunc) inserting delays where
necessary.

/∗ global declarations ∗/
char PC; /∗ pad character ∗/
char ∗BC; /∗ backspace sequence ∗/
char ∗UP; /∗ up line sequence ∗/

/∗
∗∗ ‘tputs’ sends the ‘string’ using the function ‘outfunc’
∗∗ It inserts padding characters as necessary for the current
∗∗ terminal type and the number of ‘lines’ affected.
∗/
void
tputs(string, lines, outfunc)
char ∗string;
int lines;
int (∗outfunc)();

_____________________________________________________________________

_____________________________________________________________________

Sometimes pad characters are required by a terminal and tputs inserts these as
well. The pad character is taken from the global variable PC.

We illustrate the use of termcap with the following code that clears the screen,
moves the cursor to the middle of it and writes the message "Welcome to UNIX".
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#include <stdio.h>

char ∗getenv();
int tgetent();
int tgetnum();
char ∗tgetstr();
char ∗tgoto();

char buff[1024]; /∗ to hold termcap entry ∗/
char area[1024]; /∗ to hold string capabilities ∗/

main(argc, argv)
int argc;
char ∗argv[ ];
{

char ∗name; /∗ terminal type name ∗/
char ∗ap = area; /∗ capability storage area ∗/
char ∗cl; /∗ clear screen string ∗/
char ∗cm; /∗ cursor motion string ∗/
int li; /∗ number of lines on the screen ∗/
int co; /∗ number of columns on the screen ∗/
char ∗msg = " Welcome to UNIX" ;

if ((name = getenv(" TERM" )) == NULL)
{

fprintf(stderr, " %s: cannot find terminal type (TERM) \n" ,
argv[0]);

exit(1);
}

switch(tgetent(buff, name))
{
case −1:

fprintf(stderr, " %s: termcap file inaccessible \n" , argv[0]);
exit(1);

case 0:
fprintf(stderr, " %s: cannot find entry for %s \n" , argv[0], name);
exit(1);

}

cl = tgetstr(" cl" , &ap);
cm = tgetstr(" cm" , &ap);
co = tgetnum(" co" );
li = tgetnum(" li" );

printf(" %s%s%s \n" , cl, tgoto(cm, (co/2) − (strlen(msg)/2), li/2), msg);
}
Some versions of UNIX such as System V provide an alternative to termcap,
called terminfo.
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7.16  Miscellaneous
There are many other function libraries available for UNIX. Some, like the standard
library, termcap and plot, are supplied with most UNIX systems. Others, such as
the screen handling library, curses, are in the public domain and available from
user groups. Still others, such as database access functions, are sold commercially.

7.17  Perspectives
The main lesson of this chapter is that you should be alert to the existence of a
considerable range of standard functions. The C library distributed with UNIX
contains a wide variety of useful functions written by experts and tested over many
years.

We also emphasise that you should check the error codes returned by library
functions. A very common source of error in C programs is due to programmer’s
failure to do so: the program continues as if all were well. Should it fail, that may
happen long after the error occurred. This type of bug can be very difficult to find.
Worse still, the program may never fail but continue to completion, producing
incorrect results. Another common error involves a mismatch between the type of
an argument in the function declaration and the type of the same argument used in a
call. For example, if an argument is declared as an integer and the function is
called with a floating point number, strange results ensue.

7.18  Summary
The full set of functions we have discussed is summarised below.
Input and Output: Standard I/O Functions

• Character I/O: getchar, putchar, fgetc, fputc, getc, putc, ungetc, gets,
puts, fgets, fputs

• Formatted Input: scanf, fscanf, sscanf
• Formatted Output: printf, fprintf, sprintf, atoi, atof, atol
• Files other than standard input and output: fopen, fclose
• Binary I/O: fread, fwrite
• File Positioning: fseek, ftell
• File Status: feof, ferror, clearerr
• Pipes: popen, pclose
• Buffer Control: setbuf, fflush

Input and Output: System Call I/O
• Error Handling and System Calls: perror and the variable errno
• Basic I/O: open, read, write, close, creat, unlink
• Temporary File Names: mktemp
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• Positioning: lseek
• Interface with the standard I/O package: fileno, fdopen
• Pipes: pipe
• File Status and Control: stat, fstat, link, chmod, umask, access, chdir,

dup
• Device Control: ioctl

Storage Allocation
• malloc, calloc, realloc, free (salloc, srealloc)

String Handling
• String Length: strlen
• Copying Strings: strcpy, strncpy
• Concatenating Strings: strcat, strncat
• Comparison and Scanning: strcmp, strncmp, strchr, strrchr
• Common Uses and Errors

Character Types: isalpha, isupper, islower, isdigit, isalnum, isspace, ispunc,
isprint, iscntrl, isascii

Sorting and Searching: qsort, bsearch, regcomp, regex
Assertions: assert
Non-local Goto - Long Jump: setjmp, longjmp
System Interface: declaration of main, arguments, environment variables, getenv,
environ variable

• Initiating Processes: execve, execv, execle, execl, execvp, execlp
• Parallel Execution: fork, wait, system
• Controlling a Process: exit, pause, nice, brk, sbrk
• Process Information: getpid, getuid, geteuid, getgid, getegid, times
• Process Monitoring: profil, ptrace
• Interprocess Control: signal, kill, alarm
• User Information: getpwuid, getpwnam and structure passwd
• Time of Day: time, ctime, localtime and structure tm, asctime, timezone

Other libraries:
• Mathematical: sin, cos, asin, acos, atan, atan2, sinh, cosh, tanh, exp,

log, log10, pow, sqrt, abs, fabs, floor, ceil, hypot, cabs, rand, srand
• Plotting: openpl, erase, label, line, circle, arc, move, cont, point,

linemod, space, closepl, plot filters
• Terminal Capabilities: termcap file, tgetent, tgetnum, tgetflag, tgetstr,

tgoto, tputs
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Chapter 8

Program Development

As in most applications of computers, we start with a problem that we want to solve
and we design a solution. The design process involves deciding the role that a
program might play, selecting the form of that program and, finally, its
implementation. In designing and writing a program, we illustrate:

• the tools design approach that is well supported and exemplified by UNIX,
• the use of existing UNIX utilities as well as standard functions to reduce the

effort involved in implementing a system,
• programming techniques and style,
• examples of complete working functions which perform some idiomatic

operations that arise in similar forms in many applications,
• the organisation and management of program sources including the use of

separate compilation, lint and make.

8.1  Introduction: the problem
The problem we want to address is the management of a mailing list for use by an
organisation with up to 1000 members or clients. This mailing list, be it manual or
automated, needs to record the following information about each person:

• their name,
• postal address,
• status information about their membership as well as
• any other comments.

Some of the operations we need to do are:
• address envelopes for a mailing to each person on the list,
• address envelopes for a certain group of people, such as full members only or

those who live in certain postal areas,
• print these labels in various orders, including alphabetical and postal code

order,
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• print form letters with personalised fields within them.
Now a manual system that allows all this is very labour intensive even for quite
small mailing lists of fifty or so. Nevertheless, let us consider how a manual
system might operate so that we can gain an appreciation of the task at hand and
approaches to automating the process.

A common manual system for maintaining mailing lists involves keeping an
index card for each member with name, address and other details. New members
are added by writing a new card and placing it into the sequence of cards in
alphabetical order. When a member leaves the organisation, it is a simple operation
to find their card and remove it. Modifications are also easy: the appropriate card is
located and the information modified. When information is to be mailed to all
members it is a simple (but tedious) process of going through the cards and writing
each address onto an envelope. Finally, we can sort the envelopes as required.

A computer system can follow this manual system closely. The names and
addresses can be kept in a computer file. The additions, deletions and
modifications can be carried out using an editing program. Placing the addresses
on envelopes can be done by another program that reads the membership file and
prints the addresses either directly onto envelopes or onto adhesive backed labels.
A program that prints addresses can also select them on various user-defined
criteria. Entries in the mailing list file may contain information other than name and
address: the grade of membership, personal interests, financial status and other
information can also be stored.

Form letter generation can be done by a program that scans the mailing list
name and address file, printing a copy of a form letter for each selected entry. The
printed letter can be modified to include the name and address and other
information from the mailing list entry.

8.2  Designing the mailing list system
Having analysed the problem, we decide that a program has a good deal to offer
over a manual system. The first decisions we need to make in designing the
program are:

• the form in which we store the mailing list,
• the major operations we need to perform on that mailing list and the structure

of the system in terms of the programs that we need to write, the function of
each program and the way that they fit together,

• the program’s internal representation of the data for each person on the
mailing list.

Once we have made these high level design decisions, we can begin the lower level
design of the individual programs. In general, design of a system is not a
straightforward task: we typically need to explore several possibilities for various
aspects of the design and we may well need to revise the design as we attempt to
implement it. In this chapter we do not go into the full range of design choices that
we could have explored. Instead, we describe and justify our design. But be
warned! You cannot normally expect the design and implementation of a system to
flow straight through as smoothly as our description in this chapter. Rather, you
can expect to have to explore blind alleys, back up and review decisions.
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One aspect of our design approach involves building tools as we go: these may
be viewed as useful primitives for the problem at hand. Creating these makes a
good starting point in the development of a program and they make it easier to
explore different design possibilities. Our overall approach to design is top-down ,
starting with overriding and general issues before details. But we combine it with
the construction of useful tools for the program and this constitutes a partial
bottom-up approach. This combination seems to work well.

8.2.1  The file structure
Our first step is to select the representation of the membership mailing list file.
This is a critical choice since the structure of the file affects operations on it and the
complexity of the resulting suite of programs that manage it. Given that our
‘database’ is quite small (less than 1000 entries), we decide to store the data in an
ASCII text file. This decision immediately removes the major programming task
of writing a program to edit the data file. The addition, deletion and modification
of entries can be carried out with any text editor available (for example ed or vi).
The mailing list can also be printed and manipulated with normal UNIX utilities.

A text editor is quite adequate for maintaining the mailing list file so long as
we do not need to make too many changes. This is almost certainly the case with a
small mailing list such as we are considering. When the volume of changes
increases it may be worthwhile writing a special purpose data entry and editing
program. Another important reason for writing a special purpose program might be
that a conventional text editor is unsuitable if several operators need to make
changes simultaneously. Perhaps the greatest weakness in keeping the mailing list
as an ordinary ASCII file that is maintained using an editor is that it is easy to put
incorrect text into the mailing list and corrupt it. Given our approach, we can plan
for a program to maintain the mailing list for a later version of the system.

8.2.2  Major program operations
The major operations we need are:

• selecting the required members’ entries for the current printing,
• sorting entries into the required order,
• printing labels and
• printing form letters.

First we consider the printing programs and we decide to have a separate program
for each printing task. While it would be possible to amalgamate the two functions
into a single program and select the required operation using a command line
argument or flag, it is simpler to separate them. The two programs will, of course,
have some functions in common and we will put these into a C library which is
available to both programs. We call the label printing program labels and the form
letter generation program letters.

Now we consider the task of selecting required parts of the mailing list. One
approach is to add a selection feature to both the labels and letters programs but in
the UNIX environment it is more natural to have a separate program that does the
selection, passing the required entries to either labels or letters. This is an obvious
application for a filter which we call select.
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Select must read the name and address file, skipping over all but selected
items; these are sent to the standard output file. A UNIX pipe can direct the output
of select into the input of labels with the following shell command.

select selection flags | labels
The output of labels can itself be piped to the UNIX lpr program for printing on a
printer (presumably containing the labels). This approach localizes the selection
code into one program (select) rather than two (labels and letters). It has the
added bonus that it can be used as a component for any other pipelines that process
the address file.

We take much the same approach to the sorting operation. We have a program
called sortml and we use it in a pipeline like this shell command

select selection flags | sortml sort flags | labels
which selects entries, sorts them and then produces labels.

8.2.3  File format
Having decided that the data file should be a simple ASCII file, we must impose
some form on the data so that the programs (and users) can find the various
components of each entry. There must be some mechanism for designating the
various parts of the entry. For example, we need to be able to distinguish the name
part and the address part.

We choose to place each field on a separate line and each complete entry is
followed by a blank line. If a field is too long to fit on a single line, we need a
convention to indicate that it is continued on the next line. Because we would like
to allow that some fields be omitted from an entry, we need to specify the start of
each field and its type. We have chosen the following structure:

• the field type is indicated by a word at the beginning of the line followed by a
colon and the field value comes after this field label.

• field continuation to subsequent lines is indicated by leading white space on
the continuation lines.

• entries are separated by at least one blank line.
An example entry is

Name: Kim Dent
Address: 42 Brown St,

Sydney 2001
Australia

Comments: unfinancial member
This form is fairly easy to manipulate with a text editor and the program we are
about to write. We have the following field names.
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Name: full name including title if necessary
Address: address excluding postal code, but formatted as we would

want it to appear on an envelope or letter.
Postcode: postal code
Descriptors: one or more single word descriptions separated by

white space
Comments: comments about the entry

Each of the programs in our package must be able to read and manipulate files with
data in this form. We should ensure that the programs are structured so that new
field types are easily added. This means that we must allow that some fields be
omitted from any particular mailing list entry. We also bear in mind that these
fields may be given more structure in a later version of the system. For example,
we may want the Name field structured so that a program can readily extract the
title or family name.

8.2.4  Data structures
Each component of a mailing list item is a string. So a natural representation for a
mail item is
struct ml_item
{

char ∗name; /∗ full name ∗/
char ∗address; /∗ address ∗/
char ∗postcode; /∗ postcode ∗/
char ∗descriptors; /∗ descriptors ∗/
char ∗comments; /∗ other information ∗/

};
Since we need this structure in many parts of each of the programs, we define a
typedef.

typedef struct ml_item Ml_item;
This statement associates the identifier Ml_item with the type struct ml_item. A
subsequent declaration

Ml_item ∗m;
declares m to be a pointer to a structure for a mailing list item, ml_item.

The ml_item structure contains pointers to the strings, rather than the actual
values of the various fields. We could have declared the structure entries to be
character arrays and put the field values into the actual structure. This has the
disadvantage that the size of the arrays is fixed at compile time. Our choice of size
may be too small, in which case some field values may not fit. On the other hand if
we choose a large size then space is wasted for most fields. Some fields, such as
the postal code, may have a known fixed size and we could have an array within the
structure to hold them. However, this would introduce a special case and so we
have decided to store pointers to each field in the structure. In addition, even postal
codes differ between countries and we prefer to avoid unnecessary restrictions.
Representing each field as a string gives great flexibility.

Our problem of field storage still remains. If we declare fixed size arrays for
the fields we have the same problem as before. A better way is to use the standard
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library functions for storage allocation: malloc (its safer form, salloc), calloc,
realloc (its safer form srealloc) and free. Storage can be allocated as needed with
exactly the right amount for each field.

We follow the usual practice of placing common declarations, like that for the
mailing list entry structure, in a separate header file which we include at the
beginning of each program file that requires the common declarations. By
convention, the header file name has the suffix .h and we call our declaration file
ml.h. This file will grow as the program development proceeds.

Exercise
Our system design places the mailing list in an ASCII file with modifications being
made with a text editor. Consider how the rest of the system design is affected by
the use of a simple database package to store the information.

Answer
The primary difference is that the selection of mailing list items and their
components is much simpler with a database. This means that the input functions
in labels and letters change. Other parts of the system remain the same.

Several database packages for UNIX are available and would be useful in a
real mailing list management system.

8.3  Implementation of the label printer
We now begin our detailed implementation of the programs. We start with labels
but as we design it, we keep the other programs in mind so that components can be
shared by each program in the system.

The overall form of labels is
for each item in the mailing list

read the item from the mailing list file
print the name, address and postal code for the label

We note that the reading of an item from the mailing list file should be common to
the other programs in the system (letters and select). This is fairly typical of
substantial programs, where there are many primitive operations that we can define
and implement for use at several points in the system.

At this early stage, we also need to consider how we deal with errors. Given
that the mailing list is an ordinary ASCII file, it could easily contain text that is not
in the form required by our system. Should we encounter odd text within the file,
we want to be able to tell the user about it. We decide to maintain a line count in
the mailing list file as we read and we can report the line number at which an error
occurs.

8.3.1  Reading an item
We want to read mailing list entries from the standard input file. This involves
reading the ASCII representation and converting it into the internal form of a
Ml_item. We call this function readml and it is shown below.
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/∗
∗∗ ‘readml’ reads a mailing list item into ‘tmp’ from file ‘mf’
∗∗ On correctly read item, it returns ‘OK’ .
∗∗ It returns EOF on end of file.
∗∗ Other errors cause an exit.
∗/
int
readml(mf, tmp)
FILE ∗mf; /∗ file to read item from ∗/
Ml_item ∗tmp; /∗ pointer to structure to read into ∗/
{

/∗ skip white space (including newlines) ∗/
if (skipover(mf, " \n \t " ) == EOF)

return EOF;

for (;;) /∗ read each field of this item ∗/
switch (readfield(mf, tmp))
{
case ERROR: exit(1);
case END: return OK;
default: break; /∗ redundant but clearer ∗/
}

}
The first parameter to readml is a standard I/O package file pointer. This

means that the calling program can read items from any open file (including stdin)
using this parameter. The second parameter is a pointer to a mailing list item
structure which has been allocated by the calling program. We could have
allocated the storage in readml but it is more flexible to let readml just read a mail
item into a preallocated storage area.

The action of readml is to first skip any blank lines and then read each field
into the appropriate structure item. We use skipover to skip over any number of
characters in the given set: it uses ungetc to ensure that the next character read is
not in the given set. (We leave writing skipover until later.)

The call on the function readfield is the heart of readml. The code for
readfield appears below. Readfield must first read the field name so that it can
work out the type of the field. To do this, it must find the field identifier which is a
sequence of characters terminated by a colon. Then it reads the data for the field
into a dynamically allocated area.

Note that on an error in reading the mailing list, we exit. In this application,
we choose not to risk printing incorrect labels. In other situations, it might be more
appropriate to print error messages on stderr and continue.

Readfield could determine the type of the field, by reading the first word of
the line and looking it up in a table using strcmp. We simplify things by observing
that the first letter of each of our field names is different and so we can use a simple
switch on the first character of the field to determine the field type. This might be
an advantage if users of the program prefer to abbreviate field names or if they are
likely to mistype a field name. An even better strategy might be to allow the user
to enter as many characters of the field identifier as they wish and the program
would match all that are provided, reporting an error if the input does not match
any of the field identifiers. Note that this stage of our design affects the user’s view
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of the system: this is typical of programming in that problems are not usually
tightly defined at the start. Now, readfield has to read a field in the following form

field-identifier: field contents
blank space at the beginning of continuation lines

where the field continuation lines are optional.
/∗
∗∗ ‘readfield’ reads the next field from file ‘mf’
∗∗ into mailing list item struct ‘tmp’
∗∗ returns OK on a correct field
∗∗ END on last correct field (on reaching EOF)
∗∗ ERROR on error in field
∗/
int
readfield(mf, tmp)
FILE ∗mf; /∗ file to read field from ∗/
Ml_item ∗tmp; /∗ structure to place field into ∗/
{

int c;
int ftype; /∗ field type character ∗/
char errmess[BUFSIZE];/∗ error message buffer ∗/
char ∗linep = NULL; /∗ pointer to each line of field ∗/
char ∗fieldp = NULL; /∗ pointer to complete field ∗/

/∗ read the character that defines the field type ∗/
if (((ftype = readch(mf)) == EOF) | | (ftype == ’ \n’ ))

return END;

/∗ set field type ∗/
switch (ftype)
{
case ’ N’ : tmp−>name = fieldp; break;
case ’ A’ : tmp−>address = fieldp; break;
case ’ P’ : tmp−>postcode = fieldp; break;
case ’ D’ : tmp−>descriptors = fieldp; break;
case ’ C’ : tmp−>comments = fieldp; break;

default: sprintf(errmess, " illegal field type <%c>" , ftype);
error(errmess);
return ERROR;

}

/∗ skip the rest of the field label ∗/
if ((skipto(mf, NAME_END) == EOF)
| | (skipover(mf, WHITESPACE) == EOF))
{

error(" EOF while reading field" );
return ERROR;

}
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/∗ read each line of the field ∗/
for (;;)
{ /∗ read a line and check for EOF ∗/

if ((linep = getline(mf)) == NULL)
{

error(" EOF while reading field" );
return ERROR;

}

if (fieldp != NULL)
{ /∗ add this line to the field ∗/

fieldp = srealloc(fieldp, strlen(linep) + strlen(fieldp) + 1);
strcat(fieldp, linep);
free(linep);

}
else

fieldp = linep;

/∗ check if the next line is part of this field ∗/
if (strchr(WHITESPACE, c = readch(mf)) == NULL)
{

unreadch(c, mf);
break; /∗ end of field reached ∗/

}
(void)skipover(mf, WHITESPACE);

}
/∗ by this point the whole field has been read ∗/

/∗ remove last newline from field ∗/
∗(fieldp + strlen(fieldp) − 1) = ’ \0’ ;

return OK;
}
So our readfield function only has to read and save the first character of the field
name. It then skips to the character that indicates the end of the field name. We
have defined (in ml.h) that character to be a colon. We do this with a function
called skipto which is nearly the opposite of skipover, in that it skips characters
until it finds a character in a given set and it actually reads that character (where
skipover does not). After finding the colon, readfield skips over white space (tabs
or spaces) and then reads the rest of the line using getline. It then checks for
leading white space on the next line which indicates that it must keep reading the
current field on that line. After reading the entire field value, it assigns a pointer to
the appropriate value in the Ml_item structure. Note that we have defined
WHITESPACE and NAME_END in ml.h. We also delegate the task of printing error
messages to the error function.

In reading a field, we use getline to read the remainder of the current line,
allocating just enough storage to hold the text read (and the terminating \0). As it
reads additional lines, it uses srealloc to allocate space for the field so far, the line
just read and the terminating \0. (Remember that strlen returns the number of
characters in the string, excluding the \0.)
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Getline is very similar to the function given on page 000 of Chapter 5. It
reads from mf until it reaches the end of the current line. The first BUFSIZE
characters are stored in an area allocated by salloc. Since we cannot know the size
of the field needed until we actually read it, we use srealloc to enlarge the area as
necessary. Before getline returns a pointer to the area, it calls srealloc to reduce it
to the exact size needed for the string and its trailing \0.
/∗
∗∗ ‘getline’ reads a line from file ‘mf’
∗∗ It allocates space for line.
∗∗ It returns pointer to line.
∗∗ On EOF, it returns NULL.
∗/
char ∗
getline(mf)
FILE ∗mf; /∗ file to read from ∗/
{

char ∗line = salloc(BUFSIZE);
int len = BUFSIZE;
char ∗cp = line;
int count = 0;
int c;

do
{

if ((c = readch(mf)) == EOF)
{

free(line);
return NULL;

}
if (count >= (len − 1))
{

line = srealloc(line, len += BUFSIZE);
cp = line + count;

}
∗cp++ = c;
count++;

} while ( c != ’ \n’ );

∗cp = ’ \0’ ; /∗ add string terminator ∗/
return srealloc(line, ++count);

}

Exercises

1. Write the skipover function described on page 000 and used in readml. It
should use unreadch to ensure that the next character that the program reads
is not in the given set.

2. Write the skipto function used in readfield.
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3. Write the error function.

Answers

1.
/∗
∗∗ ‘skipover’ skips characters in string ‘chs’ on file ‘mf’
∗∗ returns the first character not in ‘chs’
∗∗ EOF on end of file
∗/
int
skipover(mf, chs)
FILE ∗mf; /∗ file to read from ∗/
char ∗chs; /∗ characters to skip ∗/
{

int c;

while ((c = readch(mf)) != EOF)
if (strchr(chs, (char)c) == NULL)
{

unreadch(c, mf);
return c;

}
return EOF;

}
2.

/∗
∗∗ ‘skipto’ skips characters on file ‘mf’ until a character from
∗∗ the set in string ‘chs’ is reached
∗∗ It returns OK if a character from the set is reached.
∗∗ EOF if EOF reached
∗/
int
skipto(mf, chs)
FILE ∗mf; /∗ file to read from ∗/
char ∗chs; /∗ set of chars to look for ∗/
{

int c;

while ((c = readch(mf)) != EOF)
if (strchr(chs, (char)c) != NULL)

return OK;
return EOF;

}
3.
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/∗
∗∗ error prints an error message string along with
∗∗ the program name, file name and line number.
∗/
error(s)
char ∗s;
{

fprintf(stderr, " %s: %s at line %d in file %s \n" ,
myname, s, lineno, filename);

}

8.3.2  Labels
We are now almost ready to complete the last details of the program that prints
mailing labels. The actual code for the main loop looks like this.

for (;;)
{

item = talloc(Ml_item);

if (readml(mf, item) == EOF)
exit(0);

printlabel(stdout, item);

freeml(item);
}

A mailing list item structure is allocated (using talloc), and readml reads the next
item into it. The item is then printed on the standard output file (by printlabel) and
the item structure deallocated. This loop repeats until we reach the end of the file.

We still have to write the functions printlabel and freeml. Freeml is easy
since it has only to deallocate any field strings allocated when the item was read.
Since some fields may be missing from any particular mailing list item, we need to
check before deallocating a field string.
void
freeml(item)
Ml_item ∗item;
{

if (item−>name != NULL) free(item−>name);
if (item−>address != NULL) free(item−>address);
if (item−>postcode != NULL) free(item−>postcode);
if (item−>descriptors != NULL) free(item−>descriptors);
if (item−>comments != NULL) free(item−>comments);

free((char ∗)item);
}
The printlabel function is a little more complicated and we need to know the size
of the labels we are using.
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Address labels are often arranged in rows of four or more like this.

Kim Smith

This means that we have to print our labels four at a time since the first line of the
first four labels appears on the first line printed. To do this we have to read four
entries at a time and print them all together. This is not particularly difficult but it
would make printlabel unnecessarily complicated and we would be embedding the
details of the stationery in our code.

A much simpler approach is leave the problem of side by side labels to a
separate program. Our labels program can assume that the labels appear one per
row and print accordingly. The output from labels can then be piped into a
program that prints successive columns side by side as necessary. This might
sound like postponing an inevitable programming task but UNIX has a program pr
that can do the job. Pr is designed to format data for printing and has options that
allow you to specify the paper width, paper length, number of columns to use,
column separator character and page header. Its full facilities are described in
pr(1).

Given that our labels are exactly 33 characters wide and 6 lines high and there
are 4 labels per row and 11 rows per page, this shell command prints labels for the
mailing list file mailfile.

labels mailfile | pr -4 -t -w128 -l66 | lpr
The options on pr indicate that the data is to be formatted in four columns, with no
page header and that the paper is 128 columns wide and 66 lines long.

This approach has the added advantage that we can easily alter the stationery.
For example, if our new stationery has the labels 2 per row it is a simple matter to
modify the parameters to pr.

So now our printlabel function has only to ensure that each label it prints is
exactly 32 characters wide and 6 lines long.

Here is printlabel. It uses a globally defined variable length, which keeps
track of the number of lines in the label.
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/∗
∗∗ print an item in label format on file ‘outf’
∗∗ labels are LABEL_LEN lines by LABEL_WID characters
∗∗ with 1 line space and 1 character space between each
∗/
void
printlabel(outf, item)
FILE ∗outf;
Ml_item ∗item;
{

if(item−>name == NULL | | item−>address == NULL)
{

fprintf(stderr, " Name or Address missing from item: \n" );
printml(stderr, item);
return;

}

length = 1; /∗ printing on first line of label ∗/
lab_field(outf, item−>name, ’ \n’ );
lab_field(outf, item−>address, ’ ’ );
lab_field(outf, item−>postcode, ’ \n’ );
while (length++ < LABEL_LEN)

putc(’ \n’ , outf);
}
It leaves the task of printing the correct width form of each field to the function
lab_field.

Exercise
Write the function lab_field that sends a given field to a file. The field must not
exceed LABEL_WID, the width of the label and the label must not be more than
LABEL_LEN lines long.

Answer
We declare a global variable width that keeps the number of characters in the line
currently being printed. We only ever print LABEL_LEN lines. We leave most of the
work to the lab_char function that prints each character, checking that the width or
length restrictions are not exceeded.
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void
lab_field(outf, value, ch)
FILE ∗outf; /∗ file for output ∗/
char ∗value; /∗ field value ∗/
char ch; /∗ character to follow value ∗/
{

char ∗s;

if (length > LABEL_LEN)
return;

width = 0;
for (s = value; ∗s != ’ \0’ ; s++)

lab_char(outf, ∗s);

lab_char(outf, ch);
}

lab_char(outf, c)
FILE ∗outf;
char c;
{

if (c == ’ \n’ ) /∗ newline within a field ∗/
{

if (length++ == LABEL_LEN)
{

error(" too many lines for label" );
return;

}
else
{

putc(c, outf);
width = 0;

}
}
else /∗ ordinary character ∗/
{

if (width++ == LABEL_WID)
{

error(" field too wide for label" );
return;

}
putc(c, outf);

}
}

8.4  Program source management
At this stage, our system consists of only the label printing program which has the
following functions: main, readml, readfield, getline, skipover, skipto, readch,
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unreadch, printlabel, lab_field, lab_char, error, freeml, salloc and srealloc.
These give about 400 lines of code. In this section, we discuss the management of
the source code of these functions as we develop the program. We show how to
use lint, how to organise the functions into several files and to use make.

8.4.1  File organisation
It is possible to put all the functions into a single file and use a command like

cc labels.c −o labels
to compile it. However it is far better to break the program text into a number of
files each with a small number of related functions like this.

____________________________________________
File name Contents____________________________________________
labels.c main
readml.c readml, readfield, getline,

skipover, skipto, readch, unreadch
printml.c printlabel, lab_field, lab_char
util.c error, freeml, salloc, srealloc
ml.h various global declarations

and defined symbols____________________________________________

From the section of Chapter 4 on compiling multi-file programs, you should
be able to work out that we can compile the program when organised as shown in
the table with the following command.

cc labels.c readml.c printml.c util.c −o labels
This recompiles all the functions in all the files. During program development, we
typically alter only some of the functions at each stage in the development cycle
and we can compile each file separately and produce the object code for it. When
all files are compiled to object code like this

cc −c labels.c
cc −c readml.c
cc −c printml.c
cc −c util.c

they can be linked with this command.
cc labels.o readml.o printml.o util.o −o labels

Whenever a function is changed, only the file with the change needs to be
recompiled to object code and then the object code files relinked. For example,
after a change to readfield, only the file readml.c needs recompiling like this.

cc −c readml.c
The object files can then be relinked.

cc labels.o readml.o printml.o util.o −o labels
For small programs of one or two files this approach is often adequate. However,
with any more files the amount of typing soon becomes tedious. The command
line for relinking the labels program has about 50 characters. After each
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recompilation of a file you have to re-type it. You can avoid some typing by using
shell expansions and by creating a shell command file or script with the relinking
command.

A much more serious problem with this approach is that it is easy to
inadvertently use ‘old’ object code versions of programs. This can happen if, for
example, you change a variable declaration in a file that is included by several
program files. After making a change to ml.h every program file that includes it
must be recompiled before relinking. Unfortunately, it is very easy to forget this
and to create an executable program with some functions that were compiled with
the old declarations. Havoc can result!

8.4.2  Make
The make utility is one of the most important UNIX program development tools.
Its main purpose is to make an executable program from text and object files. It
does this according to a set of rules, some default and others defined by the user.

Let us see the make commands that help us maintain labels.o which is the
object form for the C program in labels.c.

labels.o: labels.c ml.h
cc −c labels.c

These commands indicate how the target file labels.o can be created: it depends
upon the files labels.c and ml.h and it can be made with the shell command cc −c
labels.c. These rules would normally be kept in a file called makefile. When we
type the shell command

make
the make program uses the makefile in the current directory.

Make operates by examining the files labels.o, labels.c and ml.h. If
labels.o does not exist then the action cc −c labels.c is carried out and so labels.o
is created. If labels.o already exists then the time that it was last modified is
compared with the last modification times of labels.c and ml.h. If either of
labels.c or ml.h has been modified more recently than labels.o, it needs to be
recreated and so the action cc −c labels.c is performed. With rules like this, make
ensures that new versions of the program are properly compiled: if declarations in
the include file ml.h have been modified, make determines that labels.o needs to
be recreated.

In general, a make rule has:
• a target , the name of the file you want to make;
• one or more dependencies, the files upon which the target depends;
• an action , a shell command that creates the target.

A target of one rule may also be a dependency in another rule. Here is a makefile
with a complete set of rules for our labels program.
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#
# First version of a makefile for the labels program
#
labels: labels.o readml.o printml.o util.o

cc labels.o readml.o printml.o util.o -o labels

labels.o: labels.c ml.h
cc -c labels.c

readml.o: readml.c ml.h
cc -c readml.c

printml.o: printml.c ml.h
cc -c printml.c

util.o: util.c ml.h
cc -c util.c

The first three lines in the file are a comment: comments in makefiles start with
the # character. The last four rules in our file are similar to the previous example.
These make up to date versions of the object code files that are linked together to
form our label printing program. The first rule has our labels program as target
and the object code files as dependencies. The action of this rule is a command to
link the object files and produce the executable binary file labels.

In large programs, the chain of dependencies in the makefile can become
quite long. Make builds a tree of dependencies from the rules with the target at the
root of the tree. Make then starts from the leaves of the tree and creates the
intermediate targets by invoking the necessary actions. It works its way back to the
root of the tree and so, eventually makes the final target. The final target is, by
default, the target of the first rule found in the makefile. You can specify a
different target by quoting it as an argument to the make program. For example

make readml.o
recreates the file readml.o.

Make has a set of built in rules. A particularly useful one creates an object
code file from a source file: when make finds a target name ending in .o and there
is no rule specifying how to create it, make searches for a file with the same name
but ending in .c and then it applies a default action, invoking the C compiler to
create the .o file from the .c file. If there is no .c file in the directory, make tries a
sequence of built in suffixes. If make cannot find a dependency for the .o target it
gives an error message.

Using the built in rules we can change our makefile to be slightly more
compact.
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labels: labels.o readml.o printml.o util.o
cc labels.o readml.o printml.o util.o -o labels

labels.o: ml.h

readml.o: ml.h

printml.o: ml.h

util.o: ml.h
We can further simplify this makefile because we can combine targets for which
we specify the same dependencies and actions.

labels: labels.o readml.o printml.o util.o
cc labels.o readml.o printml.o util.o -o labels

labels.o readml.o printml.o util.o: ml.h
As we develop each part of the program, we also need to use lint. This is especially
important with functions spread over several files because the compiler does not
check for consistency between actual and formal arguments to functions in different
files from their caller. We can write a rule that makes it easy to run lint as required
and we make it a rule with no dependencies as shown below.

labels: labels.o readml.o printml.o util.o
cc labels.o readml.o printml.o util.o -o labels

labels.o readml.o printml.o util.o: ml.h

lint:
lint labels.c readml.c printml.c util.c

clean:
rm *.o

Rules like the lint rule can be used to specify actions other than those that create
object or binary files. We invoke this rule with the shell command make lint. We
have another rule without dependancies. It cleans up the directory by removing all
the object code files. Assuming there is no file called clean, the command make
clean causes the action rm *.o.

Make also has simple string macros that allow you to keep repeated strings or
lists in one place and have them inserted at various points in the makefile. Macros
are similar in form to C identifiers but the convention is to use uppercase letters.
Assignments to macros have the form

variable_name = any sequence of characters

and the value of a variable is substituted elsewhere in the makefile using
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$(variable_name)

In our example makefile we can use a variable to avoid the list of object code files
in three places.

#
# makefile for the labels program
#
OBJECTS = labels.o readml.o printml.o util.o

labels: $(OBJECTS)
cc $(OBJECTS) -o labels

$(OBJECTS): ml.h

lint:
lint labels.c readml.c printml.c util.c

clean:
rm *.o

If we add another file to the program, we need only alter the first line of the
makefile.

In addition to built in rules, make has some predefined macros. For C
programmers, the most useful of these is CC. The default value of the built in rule
that converts a C source file into an object code file uses the CC variable instead of
cc. You can use a different C compiler by specifying a new value for CC at the
beginning of your makefile. This is useful in testing new versions of the C
compiler or when using compilers for different target machines.

Another important variable is CFLAGS which enables you to specify arguments
to the C compiler. It is commonly used to tell the C compiler to run the object code
optimiser by including the following line.

CFLAGS = −O

You can change both the built in rules and suffixes by including special rules in the
makefile. For details you should consult the description of make in Volume 2 of
the Unix Programmers Manual.

8.5  Implementation of selection program
Now we deal with the program that selects the required mailing list items for a
particular mailing. It is a filter that provides input for the labels program we have
already written as well as letters and sortml (which we write in the next sections).
To produce labels for a selected set of entries we use a command like this.

select flags <file | labels | pr −t −4 −w128 −l66 | lpr
Where the flags indicate which entries should be selected from file . The labels
program reads the selected entries from its standard input file and processes them as
usual.
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The main loop of our selection program looks like this.
for (;;)
{

item = talloc(Ml_item);

if (readml(mf, item) == EOF)
exit(0);

if (selected(item))
printml(stdout, item);

freeml(item);
}

We already have readml to read mailing list entries. We still need to write the
functions:

• selected which applies the selection criteria, returning a value indicating
whether or not an entry is to be selected

• printml which takes a mailing list structure and writes it to the standard output
file in exactly the same format as the input file.

But first we need to decide on the type of selection criteria and how these should be
described to the select program.

8.5.1  Design of the selection mechanism
We want to make selections on the basis of field values. Some examples of
selections we want to be able to make include the selection of entries for people:

• in a given postal code area,
• in a given suburb and
• who are office bearers of the society.

We also want to be able to select entries that match a combination of requirements
like:

• those for people in a given suburb and who are office bearers;
• entries in several postal districts.

In designing this part of the program, we bear in mind that the standard library has
functions regcmp and regex that match an arbitrary pattern against a string. The
form of these patterns is used in many UNIX tools including editors like ed, vi and
sed. The first function of the pair is regcmp, and it takes a pattern and compiles it
into an internal form for the matching operation. It returns a pointer to the
compiled form. The second, regex, takes a pointer to the compiled pattern and a
pointer to the string and returns a NULL value if they do not match and a non-NULL
value if they do.

So now we can allow the fields and patterns to be specified as command line
arguments to the select program like this
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select −DF −P" ^2"
which selects mailing list entries for people who have an ‘F’ in their descriptor field
or a postal code starting with ‘2’. (The circumflex indicates the beginning of the
field.) Each field/pattern pair is a separate argument and has the general form

−field-character pattern

where field-character is the first letter of the field name and pattern is the regular
expression that is to be matched against the field value from each mailing list entry.
Since patterns can contain characters that are interpreted by the shell, it may be
necessary to quote arguments to the select program. When a number of arguments
is used, entries matching any of the patterns are written to the output.

This design allows selection of one pattern or another but we have not
explicitly provided for matching one pattern and another. We handle this, albeit
not very efficiently, with multiple invocations of the select program in the same
pipeline. For example, if we want entries for people with postal code 2006 and
who are members of the executive (exec in the Descriptor field) we can use this
command

select −P2006 <mylist | select −Dexec | labels | ...
which acts on a file called mylist.

8.5.2  Implementation of the selection mechanism
We store the field and pattern information in an array of structures, each containing
a pointer to the compiled pattern that regcmp returns and the character which
indicates the field.
typedef struct ml_pat
{

char ml_type; /∗ field type ∗/
char ∗ml_regex; /∗ compiled regular expression ∗/

} Ml_pat;

static Ml_pat patterns[MAXPATS];
Now we can write the code to scan the program arguments and initialise this array.

for (i = 1; i < argc; i++) /∗ for each command argument ∗/
if (argv[i] [0] == ’−’ )

makepat(argv[i] [1], &argv[i] [2]);
else

filename = argv[i];
You might like to amend this to do tighter checking on the arguments. As it stands,
it treats any argument with a minus sign as a selection flag and any other as a
filename. The makepat function calls regcmp to compile the regular expression
and put it and the field designator character into an Ml_pat structure.



-- --

Program Development 245

makepat(field, pat)
char field;
char ∗pat;
{

if (strchr(FIELD_NAMES, field) == NULL)
{

fprintf(stderr, " %s: illegal field type − %c \n" ,
myname, field);

exit(1);
}

patterns[numpats].ml_type = field;
if ((patterns[numpats].ml_regex = regcmp(pat, 0)) == NULL)
{

fprintf(stderr, " %s: illegal pattern − <%s> \n" ,
myname, pat);

exit(1);
}
numpats++;

}
Note that FIELD_NAMES is defined as follows.
#define FIELD_NAMES " NAPDC"
We now write selected which takes a mailing list entry and goes through the array
of pattern structures, using regex to match the pattern against the appropriate field.
If a match is found it returns the value 1 otherwise 0.
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selected(item)
Ml_item ∗item;
{

int i;
char ∗s;

if (numpats == 0)
return !NULL; /∗ select all if no patterns specified ∗/

for (i = 0; i < numpats; i++)
{

switch(patterns[i].ml_type)
{
case ’ N’ : s = item−>name; break;
case ’ A’ : s = item−>address; break;
case ’ P’ : s = item−>postcode; break;
case ’ D’ : s = item−>descriptors; break;
case ’ C’ : s = item−>comments; break;

default: error(" illegal pattern type" );
exit(1);

}
if(regex(patterns[i].ml_regex, s, 0) != NULL)

return !NULL;
}
return NULL;

}
All that remains is to put these functions together in one or more files and adjust
our makefile. We can put the makepat and selected functions together in a file
along with the declarations for patterns and numpats. The variables are declared
as statics since they are not needed elsewhere.

8.5.3  The printing function
The printml function takes a structure containing a mailing list entry and writes it
to a specified file in the same format used in the input file.
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static int length;
static int width;

void
printml(outf, item)
FILE ∗outf;
Ml_item ∗item;
{

printfield(outf, " Name" , item−>name);
printfield(outf, " Address" , item−>address);
printfield(outf, " Postcode" , item−>postcode);
printfield(outf, " Descriptors" , item−>descriptors);
printfield(outf, " Comments" , item−>comments);
fprintf(outf, " \n" );

}

void
printfield(outf, field, value)
FILE ∗outf; /∗ file for output ∗/
char ∗field; /∗ field name ∗/
char ∗value; /∗ field value ∗/
{

char ∗s;

if (value == NULL)
return;

fprintf(outf, " %s%s " , field, NAME_END); /∗ print field name ∗/

for (s = value; ∗s != ’ \0’ ; s++)
{

if (∗s == ’ \n’ ) /∗ newline within a field ∗/
{

putc(∗s, outf);
putc(’ \t’ , outf);

}
else /∗ ordinary character ∗/

putc(∗s, outf);
}
putc(’ \n’ , outf); /∗ final newline for field ∗/

}
The printfield function writes the field name followed by the field value, inserting a
tab at the beginning of the second and subsequent lines of the field.

8.6  Implementation of the form letter program
The next program in our mailing list suite is one that prints form letters for mailing
list entries. As each copy of a form letter is printed, parts of a person’s mailing list
entry are inserted at appropriate places in the letter. For example, the person’s
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name and address may be placed in the letter.
The form letter itself is a simple ASCII file. You can create it with a text

editor such as ed or vi. Our form letter generator needs to read it and then print it
once for each mailing list entry read from standard input. We use the tilde (∼)
character to indicate a place to insert a mailing list field. Tilde is not commonly
used in correspondence but we make it a #define constant so that we can alter it
easily if necessary. The tilde is followed by the first character of the field name
that is to be inserted as in the following letter in which the name and address are
inserted from mailing list entries.

∼N
∼A

Dear ∼N,

All members of the XYZ Society are requested to attend a
special meeting on January 21st to discuss computer processing of our
membership records.

Yours sincerely,

Kim Smith (Hon. Secretary)
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’____________________________________________________________________

_______________________________________________________________________________________________________________________________

As the form letter generation program reads each mailing list entry from standard
input, it scans through the form letter and prints each character unless it encounters
a tilde, in which case the next character indicates the mailing list field to print.

We assume that any form letter will be small enough to fit into memory. So,
we need only read it once and then scan it for each mailing list entry.

The main loop of the program is
readletter(lf);
for (;;)
{

item = talloc(Ml_item);

if (readml(stdin, item) == EOF)
return 0;

printletter(stdout, item);

freeml(item);
}

The new functions we have to write are readletter and printletter. Readletter
reads each character from a specified file calling another function, letchar, to store
them into memory. The letchar function needs to allocate memory for the form
letter, expanding the area as necessary. Other functions in this program can access
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the form letter using the global pointer letter. Here is the code for readletter.
char ∗letter; /∗ pointer to form letter in memory ∗/
static int size = 0;
static int index = 0;

void
readletter(lf)
FILE ∗lf; /∗ file to read form letter from ∗/
{

int c;

/∗ allocate an initial area ∗/
letter = salloc(size = SIZEINC);

while ((c = getc(lf)) != EOF)
letchar(c);

letchar(’ \0’ );
}

/∗ process next character of form letter ∗/
void
letchar(c)
char c; /∗ next character from form letter ∗/
{

/∗ increase size of form letter area if necessary ∗/
if (index >= size)
{

size += SIZEINC;
letter = srealloc(letter, size);

}
letter[index++ ] = c;

}
The function printletter has to scan the stored formletter one character at a time,
printing either the character or the specified field on the specified output file. Here
is the code for printletter.
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void
printletter(outf, item)
FILE ∗outf;
Ml_item ∗item;
{

char ∗s;

for (s = letter; ∗s != ’ \0’ ; s++)
{

if (∗s != FORMCHAR)
{

putc(∗s, outf);
continue;

}

switch(∗++s)
{
case ’ N’ : fputs(item−>name?item−>name : " " , outf); break;
case ’ A’ : fputs(item−>address?item−>address : " " , outf); break;
case ’ P’ : fputs(item−>postcode?item−>postcode : " " , outf); break;
case ’ D’ : fputs(item−>descriptors?item−>descriptors : " " , outf); break;
case ’ C’ : fputs(item−>comments?item−>comments : " " , outf); break;

default: fprintf(stderr," %s: bad field specifier in letter \n" , myname);
exit(1);

}
}
putc(’ \f’ , outf); /∗ form feed between letters ∗/

}

8.7  The sorting program
As you would expect, we use the standard function qsort to do most of the work in
this program. The main function code looks like this.
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main(argc, argv)
int argc;
char ∗argv[ ];
{

FILE ∗mf;
Ml_item items[MAXITEMS];
int numitems;
int i;

myname = argv[0];

for (i = 1; i < argc; i++) /∗ for each command argument ∗/
if (argv[i] [0] == ’−’ )

field = argv[i] [1];
else

filename = argv[i];

if (filename != NULL)
{

if ((mf = fopen(filename, " r" )) == NULL)
{

fprintf(stderr," %s: cannot open %s \n" ,myname, filename);
return 1;

}
}
else
{

filename = " stdin" ;
mf = stdin; /∗ use standard input if no file specified ∗/

}

for (i = 0; i < MAXITEMS; i++)
if (readml(mf, &items[i]) == EOF)

break;
numitems = i;

if (numitems == MAXITEMS)
{

fprintf(stderr, " %s: too many items in mailing list \n" ,
myname);

return 1;
}

qsort(items, numitems, sizeof (Ml_item), compare);

for (i = 0; i < numitems; i++)
printml(stdout, &items[i]);

}
The only other function we need to write is the compare function.
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int
compare(item1, item2)
Ml_item ∗item1;
Ml_item ∗item2;
{

switch (field)
{
case ’ N’ : return strcmp(item1−>name, item2−>name);
case ’ A’ : return strcmp(item1−>address, item2−>address);
case ’ P’ : return strcmp(item1−>postcode, item2−>postcode);
case ’ D’ : return strcmp(item1−>descriptors, item2−>descriptors);
case ’ C’ : return strcmp(item1−>comments, item2−>comments);
default:

fprintf(stderr, " %s: illegal field <%c> \n" ,
myname, field);

exit(1);
}

}

Exercise
Write the make file that manages the whole system.

Answer
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#
# mailing list suite
#
SRCS =labels.c selectml.c formlet.c letter.c sortml.c \

printml.c readml.c select.c util.c
OBJS = printml.o readml.o util.o

all: labels selectml formlet sortml

labels: labels.o $(OBJS)
cc labels.o $(OBJS) -o labels

selectml:selectml.o select.o $(OBJS)
cc selectml.o select.o $(OBJS) -o selectml

formlet:formlet.o letter.o $(OBJS)
cc formlet.o letter.o $(OBJS) -o formlet

sortml: sortml.o $(OBJS)
cc sortml.o $(OBJS) -o sortml

$(OBJS):ml.h

lint:
lint $(SRCS)

clean:
rm $(OBJS)

8.8  Conventions for writing UNIX tools
short command name flag arguments first flag

arguments start with minus argument checking usage
message exit(0) on success, exit(non-zero) on failure

8.9  Perspectives
Having completed our version of the mailing list program, we need to stand back
and comment on other approaches to the problem. For example, we could have
saved programming effort by using awk and troff. These, and many other valuable
UNIX tools like yacc, lex and SCCS are discussed in Volume 2 of the UNIX
Programmer’s Manual as well as in many books about UNIX. Also, at the cost of
longer pipelines, we could have used the form letter program to do all but the
formatting aspect of the label generation program. Indeed, it is common practice to
build a quick prototype system that is composed of available tools pipelined
together: only after this has been built and evaluated would we implement parts or
the whole of the pipeline more efficiently in C.

Perhaps the greatest shortcoming of our mailing list system is that it does not
help the user maintain a correct database of mailing list items. For example,
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misspelt names may hamper the operation of the select program and we should, as
necessary, alert the person entering data if they enter a name or address field that is
too large since they may well be unaware of the limitations of the stationery. We
could rectify this shortcoming with a data entry program that interacts with the
user, checking the validity of new mailing list items and the consistency of the
database. This would be a straightforward addition to the existing system.

The system we have created is quite powerful and useful. Its development
enabled us to illustrate use of C and UNIX programming support facilities as well
as approaches to program design and implementation.

8.10  Summary
In developing our mailing list system, we showed how to organise functions in a
number of files, with closely related functions collected together in a single file.
This

• aids program clarity
• allows separate compilation during program development.

We discussed the need for make in maintaining programs, how to write rules in
terms of

• targets
• dependencies between files
• commands for creating targets
• comments (# at the beginning of the line)
• macros

and we met a number of default rules
• to create filename.o from filename.c

and macros
• CC for C compiler
• CFLAGS for flags to the C compiler
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